1-1

Attributes of a function

Obj: I can identify different attributes of a function

review | $\frac{\text { Attributes }}{\text { Domain }}$ |
| :---: |
| Range |
| Increasing |
| Decreasing |
| x-intercepts |
| y-intercepts |
| Even/Odd/Neither |
| one-to-one |
| Maximum |
| Minimum |
| End Behavior |
| Asymptotes/Discontinuities |

Domain: Represents the \mathbf{x}-values. These are read left to right
Range: Represents the y-values. These are read from low to high

Interval notation:

(smallest value, biggest value)
(,) values not included
[,] values included

Examples

Increasing: as you move from left to right the y-values increase
Decreasing: as you move from left to right the y-values decrease
Constant: as you move from left to right the y-values do not change
this behavior is reported using interval notation for the \mathbf{X} VALUES where the graph has a certain behavior

Example

x-intercepts: where the graph crosses the x-axis y-intercepts: where the graph crosses the y-axis
 These are written as ordered pairs

Symmetry: Even/Odd/Neither

Even: If the graph is symmetric to the y-axis, it is an even function

Odd: If the graph is symmetric to the origin (quadrants I and III are the same, and quadrants II and IV are the same), it is an odd function

Neither: If it doesn't fit either odd or even, then it is neither

One-to-One

If a graph passes both the vertical line test and the horizontal line test it is one-to-one

Extrema
maximums

- relative (local)
- absolute (upper bound)

minimums

- relative (local)
- absolute (lower bound)

End Behavior

What the y-values are approaching on each side

Asymptotes

A line that a graph approaches but never touches*

*This is true for vertical asymptotes, we will go into more detail for horizontal asymptotes later

Continuous: A function is continuous if you can draw it in one motion without picking up your pencil.

Discrete: made of ordered pairs or individual parts

Continuous
Function

Discrete

Function

