1-2: Exponent Rules

Coefficient: The number in front of the variable Base: The number/variable being multiplied attached to the exponent

Exponent (power): how many times the base is multiplied by itself.

Example:
2^{3} could be re-written $2 \times 2 \times 2=8$
3^{5} could be re-written $3 \times 3 \times 3 \times 3 \times 3=243$ a^{7} could be re-written $a \times a \times a \times a \times a \times a \times a$ ****DO NOT confuse 2^{3} with $2 \times 3^{* * * *}$ They are NOT the same!

$$
\begin{aligned}
& \begin{array}{r}
\text { Product Rule for exponents } \\
a^{m} \cdot a^{n}=a^{m+n}
\end{array} \\
& \text { Simplify: Watch base/coefficient! } \\
& 3 z^{2} \cdot 4 z^{4}{ }^{2} \\
& 34 z^{2} z^{4} \\
& R 2 \cdot z^{(2,4)} \\
& =12 z^{6}
\end{aligned}
$$

You try

$$
\begin{aligned}
& (-3)^{2} \cdot(-3)^{3} \\
= & (-3)^{(2+3)} \\
= & (-3)^{5} \\
= & -243
\end{aligned}
$$

Quotient Rule for exponents

$$
\frac{a^{m}}{a^{n}}=a^{m-n} \quad \text { if } a \neq 0
$$

Simplify: Watch base vs coefficient. Write all out and cancel ($\mathrm{x} / \mathrm{x}=1$)

You try

$$
\begin{aligned}
& \frac{y^{8}}{y^{6}} \frac{y \cdot y \cdot y}{y^{2}} \frac{-24 b^{5}}{16 b^{3}} \\
& o R \\
& y^{(8-6)}=y^{2} \\
& \frac{-3 b^{5-3}}{2}=\frac{-3 b^{2}}{2}
\end{aligned}
$$

Zero-exponent Rule

$$
a^{0}=1 \quad \text { if } a \neq 0
$$

Simplify

$$
\begin{array}{cccc}
3^{0} & \pi^{0} & 3 \times 0=1 \\
1 & 1 & 3 \cdot 1=3
\end{array} \frac{\partial \theta+\Phi \Omega-\Omega 0^{0} 0}{1}
$$

Negative-exponent Rule

$$
a^{-n}=\frac{1}{a^{n}} \quad \text { or } \quad \frac{1}{a^{-n}}=a^{n} \quad \text { if } a \neq 0
$$

Simplify: only move base, not coefficient!
 stays y

$\left.\frac{1}{3^{-2}}\right)$
$1 \cdot 3^{2}=3^{2}=9$

Youtry
$\frac{1}{5^{-3}}=\frac{1}{125}$

| Simplify
 $\frac{-24 b^{5}}{16 b^{-3}}$ $\frac{50 s^{2} t}{15 s^{5} t^{-4}}$
 $\frac{-3 b^{5} \cdot b^{3}}{2}$ $\frac{10 s^{(2-5)} t^{\prime} \cdot t^{4}}{3}$
 $=\frac{-3 b^{(s+3)}}{2}=\frac{-3 b^{8}}{2}$ $\frac{10 s^{-3} t^{(1+4)}}{3}$
 $10 t^{5}$
 $3 s^{3}$ |
| :--- | :--- |

How do YOU think we do this?
(hint: write it all the way out!)

Power rule for exponential expressions

$$
\left(a^{m}\right)^{n}=a^{m \cdot n}
$$

Simplify

$$
\begin{array}{lll}
\left(4^{3}\right)^{5} & {\left[(-3)^{3}\right]^{2}} & \left(6^{3}\right)^{0} \\
4^{3.5}=4^{15} & (-3)^{(32)} & 6^{(30)} \\
1107374,824 & =(-3)^{\circ}=729 & 6^{0}=1
\end{array}
$$

You try

Product to a power

$$
(a \cdot b)^{n}=a^{n} \cdot b^{n}
$$

Simplify. This case happens with PARENTHESES

You try

$$
\begin{aligned}
& (5 y)^{3} \\
& 5^{3} \cdot y^{3} \\
& 125 y^{3}
\end{aligned}
$$

Quotient to a power

$$
\begin{aligned}
& \left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad \text { if } b \neq 0 \\
& \left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n} \quad \text { if } a \neq 0, b \neq 0
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& \left(\frac{w^{4}}{4^{2}}\right)^{3} \\
& \frac{w^{3}}{4^{3}}=\frac{w^{3}}{64} \frac{\left(\frac{2 w^{2}}{y^{3}}\right)^{4}}{\frac{\left(2 w^{2}\right)^{4}}{\left(y^{3}\right)^{4}}} \\
& \frac{2^{4} w^{(2 \cdot 4)}}{y^{(3 \cdot 4)}} \\
& \frac{16 w^{8}}{y^{2}}
\end{aligned}
$$

You try

$$
\begin{aligned}
& \left(\frac{z}{3}\right)^{4} \\
& \frac{z^{4}}{3^{4}}=\frac{z^{4}}{81} \\
& \begin{array}{l}
\left(\frac{4}{3}\right)^{f^{\prime \cdot p}} \\
\left(\frac{3}{4}\right)^{2} \\
\frac{3^{2}}{4^{2}} \cdot \frac{9}{16} \frac{\left(\frac{3 a^{-2}}{b^{4}}\right)^{3}}{\frac{\left(3 a^{-2}\right)^{3}}{\left(b^{4}\right)^{3}}} \\
\frac{3 a^{(-2 \cdot 3)}}{b^{14 \cdot 3)}} \\
\frac{3 a^{-6}}{b^{12}} \\
\frac{3}{a^{6} b^{12}}
\end{array}
\end{aligned}
$$

$a^{0}=1 \quad$ if $a \neq 0$
$a^{-n}=\frac{1}{a^{n}} \quad$ or $\quad \frac{1}{a^{-n}}=a^{n} \quad$ if $a \neq 0$
$a^{m} \cdot a^{n}=a^{m+n}$
$\frac{a^{m}}{a^{n}}=a^{m-n} \quad$ if $a \neq 0$
$\left(a^{m}\right)^{n}=a^{m \cdot n}$
$(a \cdot b)^{n}=a^{n} \cdot b^{n}$
$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad$ if $b \neq 0$
$\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n} \quad$ if $a \neq 0, b \neq 0$

Simplify

$$
\begin{aligned}
& \frac{a^{3} b^{-1}}{\left(a^{2} b\right)^{3}}=\frac{a^{3} b^{-1}}{a^{2 \cdot 3} \cdot b^{3}}=\frac{a^{3} b^{-1}}{a^{6} b^{3}} \\
& =\frac{a^{3}}{a^{6} b^{3} b^{1}}=\frac{a \cdot d \cdot d}{\frac{a \cdot d \cdot a \cdot d \cdot a \cdot a \cdot a \cdot a \cdot b \cdot b \cdot b \cdot b}{4}} \\
& =\frac{1}{a^{3} b^{4}}
\end{aligned}
$$

