

<u>Prime Factorization</u>: Whatever is under the radical, break the number up into all prime numbers.

<u>Simplifying</u>: Pull out groups the size of the index.

Simplifying
If n>2 is a positive integer and a is a real number, then
$$\sqrt[n]{a^n} = a$$
 if $n \ge 3$ is odd
 $\sqrt[n]{a^n} = |a|$ if $n \ge 2$ is even

You try! $\sqrt{48}$	4∛ <u>5</u> 4
$\sqrt{200a^2}$	4√40

Simplify $\sqrt{12p^2q}$

Remember that

$$\sqrt[n]{a^n} = a$$
 if $n \ge 3$ is odd
 $\sqrt[n]{a^n} = |a|$ if $n \ge 2$ is even

For example

$$\sqrt{x^2} = |x|$$
 $\sqrt[3]{x^3} = x$ $\sqrt[4]{x^4} = |x|$ and so on

But to make our life easier some instructions will say "Assume all variables are greater then or equal to zero." In which case:

$$\sqrt{x^2} = x$$
 $\sqrt[3]{x^3} = x$ $\sqrt[4]{x^4} = x$ on

SO READ YOUR INSTRUCTIONS!!!

You try! Assume all variables are greater than or equal to zero.

 $\sqrt{75a^6}$

Simplify Assuming all variables are greater than or equal to zero.

 $\sqrt[3]{27m^4n^{14}}$

