## 2-1 Functions

## Set \& Interval Notation

Function or Not?
Function notation

Domain \& Range

Increasing \& Decreasing

Rate of Change

## (1) Set Notation

- notation used to represent a group of values (elements)
- used with discrete \&/or continuous functions

2 ways to use set notation

1. $\{$ list each element in the set $\}$
examples:
Who are the students sitting in your row?
\{Preston, Jessica, Miranda, Shelbi, Eric, will\}
What are the shoe sizes of the students in your row?

$$
\left\{10,9,8,9,2 \frac{1}{2}, 8\right\}
$$

using inequalities, equal, or not equal signs

$$
<\geq \geq \geqslant
$$

2. $\{$ variable being defined $\mid$ variable description $\}$

$$
\{x \mid x \geq 5\}
$$

## examples.

How much meneycan apersomeamme a lifetime?

All numbers less than 7.


Notations used when working with sets
and intersection

$$
\begin{aligned}
& \text { resection } \\
& \{k y r a\} \\
& \{\{\text { Preston }\}
\end{aligned}
$$

or union

$$
\{-3,-2,-1\} \cup\{3,2,1\}
$$

element
$\in$

## Interval Notation:

## () not inclu [] included



- used to represent an interval (a space in between 2 objects, pts, or units)
- used with continuous functions



## Domain \& Range

Domain: $x$-values (input or independent variable) read x's from left to rt. (smallest to largest)


Range: y-values (output or dependent variable) read y's from bottom to top (smallest to largest)

## distance vs. time

d us. I
when using versus it is always: dependent vs independent

Find the $D \& R$ :


$$
\begin{aligned}
& D:(0, \infty) \\
& R:[0, \infty)
\end{aligned}
$$



$$
D:(-\infty, \infty)
$$

$$
R:[0, \infty)
$$

What are the dependent and independent variables? What is a realistic $D \& R$, write it in set or interval notation?

A person gains 225 calories for each sandwich they eat.
calories vs. sandwiches
dependent independent

$$
y
$$

range
domain

$$
\begin{aligned}
& D:[0,12] \\
& R:[0,2700]
\end{aligned}
$$

The initial fee for an electrician to come to your home is $\$ 60$. Each additional hour is $\$ 10$.

$$
\begin{aligned}
& f(x)=60+10 x \\
& x=\# \text { of hours }
\end{aligned}
$$

## Increasing, Decreasing and Constant

- as you move from left to right the y-values increase (the graph is going up) change (the graph is flat)

this behavior is reported using interval notation for the x -values where the graph has a given behavior

Give the intervals for increasing, decreasing, and constant behavior:


$$
\begin{aligned}
& I:[3, \infty) \\
& D:(-\infty,-1] \\
& C:[-1,3]
\end{aligned}
$$



Give the intervals for increasing, decreasing, and constant behavior:




+ 00,00
$I \cdot[0, \infty)$
$D \cdot(-\infty, 0]$
$D$
F: $[-5,4]$
$(-0,-5] \cap$
$[4, \infty)$


## Function: <br>  <br> $x \rightarrow y$ <br> $x \rightarrow y$

$x \rightarrow y$
Function: when each domain value is paired with only one range value (no repeating x's)

- graphically: passes the vertical line test

Function notation: $f(x)$ " $f$ of $x "$
 means: function named $f$ is written using $x$ 's $\left.\mathrm{fi}_{\text {input }}^{\mathrm{f}} \mathrm{x}\right)=\mathrm{y} \underbrace{}_{\text {output }}$
a.
b.

Function

c.

e.
function.
$\{(1,2),(-5,4),(3,4),(-2,2)\}$ function $\cup \cup V$

Evaluate for a specific value:

$$
\begin{aligned}
& f(x)=3 x-5 \\
& x=-2 \quad 3(-2)-5=-6-5=-11 \\
& f(3)=3(3)-5=9-5=4 \\
& f(-4)=3(-4)-5=-12-5=-17
\end{aligned}
$$

$$
\mathrm{m}=\frac{\begin{array}{l}
\text { graph } \\
\text { rise }
\end{array}}{\text { run }}=\frac{\text { Slope }_{2 \text { points }}}{\Delta x}=\frac{\left(x_{1}, y_{2}\right)}{\Delta x} \frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad\left(x_{2}, y_{2}\right)
$$

$x_{2} \neq x_{1}$ or the slope is undefined rate of change $\quad \frac{\$}{h r} \quad \frac{\text { miles }}{\text { gallon }} \quad \mathrm{mph}$

What is the slope of the line? a.

$x_{1} y_{1} \quad x_{2} \quad y_{2}$
b. $(-2,3)$ and $(-4,-3)$

$$
\begin{aligned}
\frac{-3-3}{-4 \neq 2} & =\frac{-6}{-2} \\
& =3
\end{aligned}
$$

Describe the rate of change:




