2-2: Piecewise Functions

I would like you to make up your own story that matches the graph below:

Here's my story: A penguin was sleeping in a snowdrift when it was awakened by a polar bear. It ran quickly to a hiding place where it waited for the bear to pass by. Then it walked slowly back towards the snowdrift. The bear jumped out from behind a large rock and ate him before he got there.

I would like for you to draw a position vs. time graph of your day. You start at home then come (very quickly because you're late) to school early in the morning and stay here for 7 hours. You then go to your friends' house and stay there for 2 hours. You then walk slowly home.

time

Motion Detector Task!

(far)

Distance
from MD

Time

1. Prediction: Start far away, walk towards MD

Given:
Actual:

2. Prediction: Stand still, then start walking away

Given:

Actual:

3. Prediction: Walk towards it quickly, then walk slowly away.

Given:

Actual:

4. Prediction: Start half way, walk away, stand still, then quickly walks towards

Given:

Actual:

Bob started far away. Then he quickly ran towards the detector. Then he stopped. Then he walked away slowly. Then he stopped.

Prediction:
Actual:

Piecewise Function: A function whose definition changes depending on the value of the independent variable.

Recall: A function must pass the vertical line test (meaning two points cannot intersect a given vertical line at any point of the graph)

Example of what piecewise might look, like. $刀$

Graphing a piecewise

2 points per piece (endpoints of interval)
<, > open circles o
\leq, \geq closed circles
or arrow \rightarrow

Then graph the points and connect the pieces!!!

Remember:
slope $=m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Equations of a line:
point-slope form: $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$ then solve for y
slope-intercept form: $y=\underset{\substack{\mid \\ \text { slope }}}{m x}+\underset{y \text {-intercept }}{b}$

Find the equation of the line given the graph/ points:
$x_{1} y_{1} \quad x_{2} \quad y_{2}$
$(2,4)$ and $(6,-8)$

$$
\begin{aligned}
& \frac{-8-4}{6-2}=-\frac{12}{4}=-3 \\
& y-4=-3(x-2) \\
& y-44=-3 x+6 \\
& +4+4 \\
& y=-3 x+10
\end{aligned}
$$

Working Backwards!

1. Find the equation of each line (segment)
2. Determine the domain of each piece (don't forget to watch for open circles $<,>$ or closed circles \leq
3. Write as a piecewise function

Write the equation for the piecewise function:

$$
y=m x+b
$$

$$
\text { slope } y \text {-int }
$$

$$
y=x+2^{y}
$$

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
-3 x-10, \\
x+2, \\
-2,
\end{array}\right. \\
& m=\frac{\text { rise }}{r 4 n}=\frac{3}{-1}=-3 \\
& \text { Point }(-3,-1)
\end{aligned}, \begin{aligned}
& y--1=-3(x--3) \\
& y+1=-3(x+3) \\
& y+1=-3 x-9 \\
& -1 \\
& y=-3 x-10
\end{aligned}
$$

1. What is happening at time $=2 \mathrm{~h}$? turned around 2. What is happening from time $=0 \mathrm{~h}$ until time $=2 \mathrm{~h}$? What is the equation of this line? heading home $y=-2 x+5$
2. What is happening from time $=2 \mathrm{~h}$ until time $=3 \mathrm{~h}$? What is the equation of this
line? going away form $y=2 x-3$
3. What is happening from time $=3 \mathrm{~h}$ to time $=6 \mathrm{~h}$? What is the equation of this line? $d i d n^{-}+$move

$$
y=3
$$

5. What is happening from time $=6$ h to time $=7 \mathrm{~h}$. What is the equation of this line? heading nome

$$
y=-3 x+21
$$

6. Write and equation for this graph. Be sure to include the domain!!!

$$
f(x)= \begin{cases}2 x+5, & 0 \leq x<2 \\ 2 x-3, & 2 \leq x<3 \\ 3, & 3 \leq x<6 \\ -3 x+21, & 6 \leq x<7\end{cases}
$$

5. a. turned around
b. going at a constant rate away from train station)

$$
\begin{aligned}
& \begin{array}{lll}
\left(0, y_{1}\right. & (40,250) \\
(0,0)
\end{array} \\
& \frac{250-0}{40-0}=\frac{250}{40}=\frac{25}{4}
\end{aligned}
$$

