2-4 Step Functions (16.2 in book)

gs. 1146-1150 in student book

Objectives:

I can write and graph step function problem situations.
I can analyze the graphs of step functions.
I can use a calculator to graph a step function.

pg. 1146

Problem 2: Taxi Fares

In 2006, the rate for a taxi ride in Macon, Georgia, was $\$ 1.20$ for the first mile or part of a mile, and $\$ 1.20$ for each additional mile or part of a mile.

$$
x=\text { miles }
$$

$$
y=\cos t
$$

1. Define a piecewise function, $g(x)$, for the cost of a taxi ride up to 5 miles.

$$
f(x)= \begin{cases}1.20 & 0<x \leq 1 \\ 2.40 & 1<x \leq 2 \\ 3.60 & 2<x \leq 3 \\ 4.80 & 3<x \leq 4 \\ 6.00 & 4<x \leq 5\end{cases}
$$

2. What is the slope of each interval? Explain your reasoning.

$$
\stackrel{\text { rise }}{r_{4 n}}=\frac{0}{1}=0
$$

$$
m=0
$$

constant

pg. 1147
3. Graph $g(x)$ for $x<5$ miles.

Distance Traveled (Miles)
pg. 1147
You have just graphed a step function.
A step function is a piecewise function whose pieces are disjoin constant functions.
5. Why do you think this function is called a step function?
that's what
it looks !ike!
*Calculator steps in book.
pg. 1148
Problem 3 Special Step Functions

The greatest integer function is a special kind of step function. The greatest integer function, also known as the floor function, $G(x)=\lfloor x\rfloor$ is defined as the greatest integer less than or equal to x.

1. Evaluate each using the greatest integer function.
a. $\lfloor 2\rfloor=\underline{2}$
b. $\lfloor 0.17\rfloor=$ 0 $\stackrel{\leftrightarrow}{20.171}$
c. $\lfloor 2.34\rfloor=\underline{2} \underset{2}{4} \frac{23}{234} 3$ d. $\lfloor-1.2\rfloor=-2=2$

Points

2. $\operatorname{Graph} G(x)=\lfloor x\rfloor$.
$(0,0)$

$(0.1,0)$
(0.9,0)
$(1,1)$
$(1.1,1)$
$(1.9,1)$
$(2,2)$
pg. 1149
The least integer function is another special kind of step function.
The least integer function $\quad L(x)=\lceil x\rceil \quad$ also known as the ceiling function, is defined as the least integer greater than or equal to x .
3. Calculate each:
a. $\lceil 2\rceil=2$
b. $\lceil 0.17\rceil=1$
c. $\lceil 2.34\rceil=\underline{3}$
$\underset{-2-1.2]-1}{\text { d. }\lceil-1.2\rceil}=-1$
e. $\lceil 2.99999\rceil=3$

pa. 1149
4. Graph $L(x)=\lceil x\rceil$.

$10,0)$
$(0.1,1)$
$(0.9,1)$
$(1,1)$

$$
\begin{aligned}
& (1.1,2) \\
& (1.9,2) \\
& (2,2)
\end{aligned}
$$

$$
\text { 7. } \left.\left.\begin{array}{rl}
x & =\text { sales } \rightarrow \text { interval } \\
y & =\text { returned } \rightarrow \text { piece }
\end{array}\right\} \begin{array}{ll}
100, & 0<x \leq 250 \\
225, & 250<x \leq 500 \\
350, & 500<x \leq 750 \\
475, & 750<x \leq 1000
\end{array} ~ . ~ \begin{array}{ll}
150
\end{array}\right)
$$

$$
\begin{array}{|l}
\text { 14. } \\
\quad \begin{array}{l}
x=\text { weight } \\
y=\text { cost } \\
f(x)
\end{array}=\left\{\begin{array}{l}
5,0<x \leq 10 \\
10,10<x \leq 20 \\
15,20<x \leq 30 \\
20,30<x \leq 40 \\
25,40<x \leq 50
\end{array}\right.
\end{array}
$$

