

1. Write the terms of the dividend in descending order. Write the coeff. of the dividend in the first row using zeros for any missing terms not found in the dividend.
2. Write the zero, r, of the divisor ($x-r$), in the box.
3. Drop the 1st coeff. to the last row.
4. Multiply 1 st coeff. by r \& put product under the $2 n d$ coeff.
5. Add product from \#4 to 2 nd coeff. \& write the sum in the last row.
6. Repeat \#4 \& \#5 until all coeff. have been used.
7. Write answer by putting variables behind the \#'s in the last row. Start with 1 degree less than the dividend polynomial.
pg. 370
(B) $\left(4 x^{4}-3 x^{2}+7 x+2\right)<(x-1$
Find a. Then write the coeffic
Find $a=\square$
$1 / 2 \int_{4} 00-3$

Bring down the first coefficient. Then multiply and add for each column.
$1 / 2_{4}$

quotient (divisorfguotient) + remainder
$\left(4 x^{4}-33 x^{2}+7 x+2\right)=\left(x-\frac{1}{2}\right)\left(4 x^{3}+2 x^{2}-2 x+6\right)+5$
Check.

$$
\begin{aligned}
& \text { P9.369 } \begin{array}{l}
\text { (A) }\left(7 x^{* 1}-6 x^{2}\right. \\
-5 x+9) \div(x+5)^{\text {Linear }} \\
-5-6 \quad 9 \\
\downarrow-35175-845 \\
7-35169 \quad-833 \\
x^{2} x \quad \# \quad R \\
7 x^{3}-6 x+9=(x+5)\left(7 x^{2}-35 x+169\right)-836
\end{array} .
\end{aligned}
$$

pg. 370 Your Turn
Given a polynomial $p(x)$, use synthetic division to divide by $x-a$ and obtain the quotient and the (nonzero) remainder. Write the result in the form
$p(x)=(x-a)(q u o t i e n t)+p(a)$. You may wish to perform a check.
6. $\left(2 x^{3}+5 x^{2}-x+7\right) \div(x-2)$

$$
\begin{aligned}
& 2 \begin{array}{l}
2 \\
2
\end{array}-17 \\
& \downarrow+41834 \\
& \hline 2917 \\
& x^{2} x \text { \# } \\
& 2 x^{3}+5 x^{2}-x+7=\left(\begin{array}{ll}
x-2 & \left(2 x^{2}+9 x+17\right)+4
\end{array}\right.
\end{aligned}
$$

