3-1

Proofs (Vertical Angles and Parallel Lines)

Vocab: (write and draw a picture for each pair of angles) Supplementary angles:

Complementary angles:
Adjacent angles:
Linear pair:
Vertical angles:
Postulate:
Theorem:

Notation: Point A:	${ }^{\text {A }}$
Line: $\quad \overleftrightarrow{B C}$	$\longrightarrow \longrightarrow$
Line segment: $\overline{D E}$	$\bigcirc \bigcirc$
Ray: $\quad \overrightarrow{F G}$	$\xrightarrow{-}$
Angle: $\begin{aligned} & \angle J K L \\ & \angle L K J\end{aligned}$	

Lengths are equal and segments are congruent.

$$
\begin{array}{cc}
A B=C D & \overline{A B} \cong \overline{C D} \\
\underset{A}{4} \quad \underset{\text { B }}{4} \quad \underset{D}{4}
\end{array}
$$

Measures are equal and angles are congruent.

$$
m \angle A B C=m \angle C B D \quad \angle A B C \cong \angle C B D
$$

Recall:

Hypothesis

Linear Pair Postulate: If two angles form a linear pair,
Conclusion then the angles are supplementary. (pg. 150)
Segment Addition Postulate: If point B is on $A C$ and between points A and C,

$$
\text { then } A B+B C=A C .(p g .151)
$$

Angle Addition Postulate: If point D lies in the interior of $\angle \mathrm{ABC}$, then $m<A B D+m<D B C=m<A B C$.

Logic Video

Logic

Conditional Statement:

Converse:

Proofs

Proofs use logic and reasoning to come to a conclusion.
We must show a reason for every statement that is made. Reasons can be rules or properties.

Types of Proofs:

- Flow Chart Proof
- Two-column Proof
- Paragraph Proof

Properties

Addition Property of Equality:

Subtraction Property of Equality:

Reflexive Property:

Substitution Property:

Transitive Property:

pg. 159
 Flow chart proof

Steps and reasons are written in boxes and connected by arrows.

Statements are listed on the left hand column and reasons for each fall on the right. Starts with the "Given" statement and ends with the "Prove" statement.
${ }^{\text {pos. } 170}$ Vertical Angle Theorem Proof
"Vertical Angles are congruent."
2. Use the diagram to write the "Prove" statements for the VA Theorem. The "Given" statements are provided.

Given: <1 and <2 are a linear pair.
Given: <2 and <3 are a linear pair.
Given: <3 and <4 are a linear pair.
Given <4 and <1 are a linear pair.
Prove:
Prove:
3. Create a flow chart proof of the first "Prove" statement of the Vertical Angle Theorem on pg. 171.
mon Vocab
Transversal: a line that intersects 2 other lines Parallel Lines: equidistant
 Corresponding Angle Postulate: If 2 parallel lines are intersected by a transversal, then the corresponding <'s $7 / 8$
are congruent

Prove the Alternate Exterior Angle by a transversal, then alternate exterior angles are congruent."

pg. 186-193 Parallel Line Converse Theorems

We could prove the converse of all of our parallel line cut by a transversal theorems by just going backwards in our proofs.

Some are in your book and on the homework.
 Corresponding Angle Converse Postulate: If 2 lines are intersected by a transversal form congment corresponding, angles, then the lines are parallel.

19. Given $<2 \cong<7$, k is a transuersal
prove p/lx.

$$
<2 \cong<7<7 \cong<4
$$

Given

