Notes 4-2 Definition of a Function

Identifying Functions

a function is a relationship between X-values and y-values. It is a special type of equation where each \boldsymbol{X} $\overline{\text { value is paired with exactly one } y \text {-value. The } x \text {-value is }}$ called an input and the y-value is called an output. This means there is exactly one output for each input and we can also say that each _X_ value is paired with exactly one - \qquad value.
x input
5 output

The Candy Machine

Function

Input Output

Not a Function

Texting is..... MATH!

T-9 Texting represents a relation. Each button represents a few letters, or each input value

Keyboard Texting represents a function. One button represents one letter, or each input value relates to one output value.
function

Are the following relations functions? Why or why not?

$$
\{(\underline{2}, 1),(3,-2),(4,1),(5,-2)\} \quad(x, y)
$$

function, each X has one y

We can use the Vertical line test to see if a graph represents a function.

If a vertical line intersects the graph more than once, then the graph is not a function. If it intersects the graph only once then the graph is a function.

Function

Not a Function

Function Notation

$$
\underset{f(x)=y}{f}
$$

$f(x)=$ means: the value of the function f at x. $\mathrm{y}=$ means: the value of the equation at x .

Equation
Function Notation

$$
y=3 x-8
$$

$$
f(x)=3 x-8
$$

$$
\begin{array}{ll}
\text { Plug in the point }(1,-5) \text { to each example: } & (1,-5) \\
-5=3(1)-8) & -5=3(1)-8 \\
-5=-5 & -5=-5
\end{array}
$$

Write the following values in function notation $\quad f(x)$

x	2	5	6	7
input				
$f(x)$	-2	0	3	5
$(2)=-2 f(5)=0$	$f(6)=3 f(7)=5$			

Given $f(-1)=3, f(0)=5, f(1)=7, f(2)=9$, write the relationship as a table of values.

$$
\begin{array}{c|c}
x & f(x) \\
\hline-1 & 3 \\
0 & 5 \\
1 & 7 \\
2 & 9
\end{array}
$$

30.

Pon'tyorget to
EXPLATN WHY!!!

