

6.2 Graphing Cubics & Quadratics

Objective: I can determine from a graph whether a function is

a quadratic, a cubic, or neither.

Objective: I can find the vertex of a quadratic function.

Objective: I can find the inflection point of a cubic function.

Objective: I can graph quadratic and cubic functions.

*Objective: I can determine whether a graph is even, odd, or

neither.

TASK! Look for patterns!

$$f(x) = (x+2)^2$$

Kft 2

$$f(x) = (x-2)^2$$

$$f(x) = (x + 1)^2$$

$$f(x) = (x - 1)^2$$

 $f(x) = (x \pm \#)^2$ |ef+ to night| $x \leq LIE!$

$$f(x) = (x - 1)^2$$

$$f(x) = 2x$$

Graphing Form: $f(x) = a(x-h)^n + k$ Stepnose Low P

(h, k) Quadratic: Vertex X-value
Cubic: inflection point

What do you notice about the signs of (h,k)?

x's lie!

Find the vertex of the graph:

Find the vertex and graph-(find 5 points!)

$$f(x) = (x-2)^2 - 1$$

$$g(x) = 2(x+4)^2 - 2$$

Find the inflection point of the graph:

Find the inflection point and graph (find 5 points!):

$$f(x) = (x-5)^3 + 7$$

$$h(x) = -3(x-3)^3$$

Symmetry

Even: symmetric Odd: symmetric

about y-axis about origin

(vertical fold) (2 folds)

Symmetry

Even: symmetric about y-axis

Odd: symmetric about origin

