1. On the coordinate plane to the right, label the x and y axis.
2. Plot a point at $(-1,-2)$. From that point, go up 1 and right 2 and plot a second point. From that second point go up 1 and right 2 again and plot your third point.
From that point, go upt 1 and right 2 again and plot the $4^{\text {th }}$ point. Write the
ordered pair for the $4^{\text {th }}$ point here (5, _)

How would you describe a line that contain each of these points?
A straight Line

3. Using your ruler sketch a line that runs through these points and plot several other points that lie on that line. Write down the directions for finding the next point.

$$
\text { up I \& over } 2
$$

A ratio is a mathematical term that compares two objects. In our example we are comparing how far we move UP/down to how far we move left/right. . So we can write that change or distance as a ratio. This ratio is called the \qquad . Our ratio would be:

4. What makes the line straight rather than being curvy?
slope is constant

When we move vertically (up and down) we are moving parallel to the y - axis.
we call this the change in y , because the
 coordinates are \qquad .

When we move horizontally (right and left) we are moving parallel to the X-axis.
we call his the change in x because the \qquad coordinates are

This means that our ratio can be called the
rate of change. Therefore slope is the ratio of the change in our y and the change in our x .

$$
\begin{aligned}
& \frac{\text { how far we move up/down }}{\text { how far we move right/left }}=\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{\text { rise }}{\text { run }}=\text { slope }
\end{aligned}
$$

5. How do you decide if we move up/down and right/left?
Change inge $(+)(-)$ Changeinx
$(\dagger)(-)$
6. Starting at the original point, use the slope $1 / 1$ to plot another point, then $2 / 5$ to plot a third and then $-3 / 2$ to plot a fourth point. Describe what your relation looks like. Point: $(-1,-2)$

The slope of a line is the measure of how steep a line is.

When the slope is a small number then the line will be less steep.

When the slope is a large number the line will be MORE steep.

In the picture to the right list the lines that satisfy the following!

1. Have a slope close to 0 (no steepness)

2. Have a fairly small slope

3. Have a large slope (steep)

4. None of the above

Which of the above lines have:

Positive slope: 6 Negative slope: 2 3,4 0 slope: 5
No slope at all: ${ }^{\dagger}$

What is the difference between having 0 slope and not having slope?

- slope: Nosteephess

No slope(undetined): Steepness is not detineable
What kind of lines have 0 slope? Why?
$\begin{gathered}\text { Horizontal } \\ \text { Hateines } \\ \rightleftarrows\end{gathered} \frac{0}{x}=0$
What kind of lines have NO slope? Why?
Vertical lines \uparrow X

Remember from above that we can think of slope

 as:$$
\frac{\text { how far we move up/down }}{\text { how far we move right/left }}=\frac{\text { change in } y}{\text { change in } x}=\frac{\text { rise }}{\text { run }}=\text { slope }
$$

To be able to find (give the numerical ratio) slope we need to know how far we move UP/doWn and how far we move Right/left

To do this on a graph we choose the points where our line crosses a grid intersection.

We then count how far we move UP/down and how far we move
 from one grid intersection to another.

The slope is the change in the y over the change in the x.

On the following two coordinate planes draw a line with the following slopes:

Slope: 0
Slope: NONE

