Review Unit 7 Secondary III

Name:

Write an explicit and recursive rule for the following

1. 9, 27, 81, 243,...

Explicit:
$$(\mathbf{n}) = 9.3^{\mathbf{n}}, n \ge 0$$

Explicit:
$$f(n) = 4 - 7n, n \ge 0$$

Recursive:
$$f(n) = f(n-1) \cdot 3$$
, $f(\delta) = 9$

Recursive:
$$f(n) = f(n-1) \cdot 3$$
, $f(0) = 9$ Recursive: $f(0) = 4$, $f(n) = f(n-1) - 7$, $n \ge 1$

3. Find the 12^{th} term of the geometric sequence 5, 15, 45,...

$$f(n) = 5 \cdot 3^n$$

$$f(11) = 5.3" = [985, 735]$$

4. If the first three terms of a geometric sequence are 3, 12, and 48, what is the seventh term? f(n)=3.4"

Find the stated term for the following sequences

5.
$$-3$$
, -6 , -12 , -24 , ...; 9th term

$$f(n) = -3 \cdot 2^n$$

$$+(0) = -3.78$$

7.
$$4 + 16 + 64 + 256 + ... + 16,384$$

6

10.394=4.4

1-4

1-4

1-4

1-4

1-4

$$\frac{\cancel{4}}{\cancel{2}} - 2 \cdot \cancel{3}^{k} = \frac{-2(1-3^{5})}{1-3}$$

$$= \boxed{-242}$$
Evaluate the following

11.
$$\sum_{n=1}^{5} 2n+1$$

$$= 2(1)+1+2(2)+1+2(3)+1+2(4)+1+2(5)+1$$

$$= 3+5+7+9+11$$

$$= 35$$

13. A geometric sequence that has an initial value 2, ends with -4374 and has a common ratio of -3, how many terms are in the sequence?

14. A geometric sequence that begins with 2000 and successively decreases by 10%, find the 8^{th} term.

$$f(n) = 2000 (5.10)^{n} = 2000 (0.9)^{n}$$

$$f(7) = 2000 (0.9)^{7} = \boxed{996.59}$$

Find the domain and range for the following functions

15.
$$f(x) = 3^{x-2} - 1$$

16.
$$f(x) = \left(\frac{1}{3}\right)^x + 2$$

Domain:
$$(-\infty, \infty)$$

Range: $(-1, \infty)$

Domain:
$$(-\infty, \infty)$$

Range: $(2, \infty)$

Graph the following and label any asymptotes or intercepts

17.
$$g(x) = -2\left(\frac{1}{2}\right)^x$$

19. If Jane invests \$4,200 at an 8% interest **compounded continuously**, how much money will there be after 10 years?

Answer the following questions with the following: an investment of \$2000 that earns 3.4% interest

20. Write an equation to describe the value V(t) of the investment at time t if the interest is compounded monthly.

$$V(t) = 2000(1+\frac{034}{12})^{12t}$$

21. What is the value of the investment after 10 years if compounded annually?

22. How long would it take for the investment to reach \$10,000 if the interest is compounded annually?

23. A melting snowman is losing one-half of his weight each day. He originally weighed 128 pounds. Assuming that the outside temperature stays the same, how much does the snowman weigh after 5 days?

$$f(5) = 120(1/2)$$
= 4

24. A car with a cost of \$25,000 is decreasing in value at a rate of 10% each year. The function $g(t) = 25,000(0.9)^t$ gives the value of the car after t years. When will the value of the car be about \$12,000?

- 25. The population of a town was estimated to be about 5000 in 1980. The exponential growth function that models this situation is $P(t) = 5000e^{0.044t}$, where t is the time in years after 1980, and P(t) is the population at time t.
- a. What is the initial amount?

b. What is the population after 20 years?