Write the Given exponential equation as a logarithmic equation

$$1.4^2 = 16$$

2.
$$e^{17} = a$$

$$log_4 lb = 2$$
 $ln a = 17$

$$3. 10^4 = 10,000$$

1.
$$4^2 = 16$$
 2. $e^{17} = a$ 3. $10^4 = 10,000$ 4. $b^p = a$ $\log_1 10 = 2$ $\log_2 10 = 4$ $\log_3 10 = 6$

$$4. b^p = a$$

Write the Given logarithmic equation as an exponential equation

5.
$$\log_7 x = 10$$

6.
$$\ln x = 32$$

$$e^{32} = \times$$

7.
$$\log 1000 = 3$$
 8. $\log_{\Delta} \Phi = \Psi$

$$10^3 = 1000$$

8.
$$\log_{\Lambda} \Phi = \Psi$$

9. if
$$f(x) = \log_5 x$$
, find $f(125)$, $f(\frac{1}{25})$, $f(\sqrt{5})$
 $V = \log_5 125$ $V = \log_5 \frac{1}{25}$ $V = \log_5 \sqrt{5}$
 $V = \log_5 \sqrt{5}$
 $V = \sqrt{5}$

10. The loudness L, measured in decibels, of a sound of intensity x, measured in watts per square meter is $L(x) = 10 \log \frac{x}{10^{-12}}$. A Jet has an intensity level of 100 watts per square meter. How many decibels is

a Jet?

$$L(x) = 10 \log \frac{100}{10^{-12}}$$

Evaluate the following:

16.
$$\ln e^{32}$$

Write each as a single logarithm. Assume that all variables are positive.

18.
$$3\log_4 2 + \log_4 6$$

= $\log_4 9 + \log_4 6$
= $\log_4 49$

19.
$$\frac{1}{3}\log_7 y - 6\log_7 z$$

= $\log_7 y - \log_7 z$
= $\log_7 y - \log_7 z$

20.
$$3\log_2 x + \frac{1}{2}\log_2 y - 2\log(xz)$$

= $\log_2 x^3 + \log_2 (y - \log(xz)^2)$
= $\log_2 x^3 \sqrt{y} - \log(xz)^2$

Use the properties of logarithms to expand the following. Express all exponents as coefficients.

21.
$$\log_3 x^2 y^4$$

= $\log_3 X^2 + \log_3 y^4$
= $2\log_3 X + 4\log_3 y$

. 22.
$$\log_{12} \frac{\sqrt{x}}{y^2}$$

= $\log_{12} \sqrt{x} - \log_{12} \sqrt{x^2}$
= $\frac{1}{2} \log_{12} x - 2 \log_{12} y$

23.
$$\log_4 \frac{x\sqrt{y}}{z^{12}w^2}$$
= $\log_4 x\sqrt{y} - \log_4 z^{12}W^2$
= $\log_4 x + \log_4 \sqrt{y} - \log_4 z^{12}W^2$
= $\log_4 x + \log_4 \sqrt{y} - \log_4 z^{12} + \log_4 w^2$
= $\log_4 x + \frac{1}{2}\log_4 y - \log_4 z^{12} + \log_4 w^2$

Use the Change-of-Base to write the following in only natural logarithms. Then use your calculator to evaluate each.

25.
$$\log_{12} 13$$

$$\frac{\ln 13}{\ln 12} \approx 1.032$$

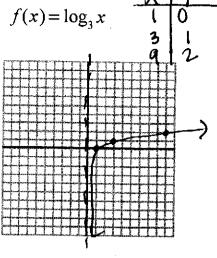
$$\frac{\ln 80000}{\ln 10} \approx 4.903$$

Solve the following. Round your answer to the nearest hundredth. Check for extraneous solutions.

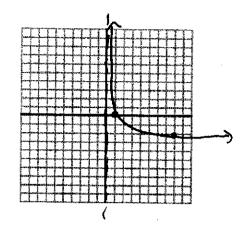
27.
$$4^{2x+10} + 6 = 262$$
 $\log 4^{2x+10} = \log 256$

28. $\sqrt{16^4} = \frac{500}{7}$
 $2x+10 \log 4 = \log 256$
 $2x+10 \log 256$
 $2x+10$

28.
$$\frac{7}{7}e^{\frac{x}{4}} = \frac{500}{7}$$


$$\ln e^{\frac{x}{4}} = \ln \frac{500}{7} \cdot 4$$

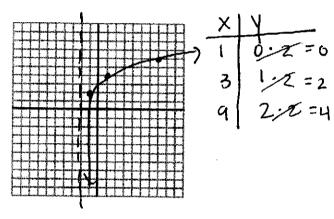
$$X = \ln \frac{500}{7} \cdot 4$$


30.
$$\ln(x+2) + \ln(x+3) = \ln 30$$

 $\ln(x+2)(x+3) = \ln 30$
 $(x+2)(x+3) = 30$
 $(x+2)(x+3) = 30$
 $(x+3)(x+2) = 30$
 $(x+3)(x+2) = 0$
 $(x+3)(x+2) = 0$

Graph the Following label at least 2 points:


$$31. \ f(x) = \log_3 x$$


$$32. \ f(x) = -\ln x$$

33.
$$f(x) = \log_2(x-3) - 2$$

34.
$$f(x) = 2\log_3(x+2) + 2$$

35. The pH of orange juice is 3.2, and the pH of milk is 6.1.

$$pH = -\log[H^+]$$

A. What are the hydrogen-ion concentrations of seawater and milk of magnesia? Seawater: $3.2 = -log \ H^{+} \ MIK$: $6.1 = -log \ CH^{+} \ 10^{-3.2} = \ CH^{+} \ 10^{-6.1} = \ CH^{$

B. How many times greater is the hydrogen-ion concentration of the seawater than that of milk of magnesia?

36. If Bob invests \$5,000 with a 4% interest rate compounded monthly, how long will it take until his investment has grown to \$7,000?

wn to \$7,000? $7000 = 5000(1 + \frac{.04}{12})^{125}$ $7000 = 5000(1.00333)^{125}$ $1000 = 5000(1.00333)^{125}$ $1000 = 5000(1.00333)^{125}$ $1000 = 5000(1.00333)^{125}$ $1000 = 5000(1.00333)^{125}$ $1000 = 5000(1.00333)^{125}$ $1000 = 5000(1.00333)^{125}$ $1000 = 5000(1.00333)^{125}$

37. Find the amount accumulated from an investment of \$2,000 over 15 years at an interest rate of 6.2% ampounded continuously.