1-4: Operations with Fractions

From the video, the denominator represents how many equal pieces the cake is cut into and the numerator represent how many pieces the number would take.
Fractions are splitting a Whole_ into equal pieces.

What fraction is shaded grey?

In the video, the sheriff discovers that $\frac{2}{3}=\frac{4}{6}$
Two fractions that equal one another but are written in a different form are called equivalent fractions We can find equivalent fractions by multiplying or dividing the numerator $\underline{\text { AND }}$ denominator by a common number.

$$
\frac{6}{10} \cdot 2=\frac{12}{20}
$$

$$
\frac{6}{10} \div \frac{2}{2}=\frac{3}{5}
$$

Name 2 equivalent fractions for the following

$$
\frac{4}{12}, \frac{1}{3}, \frac{8}{24}, \frac{2}{6}
$$

Find the value of x

$$
\frac{2^{3}}{\frac{3}{7}}=\frac{6}{x} 21
$$

Adding and Subtracting Fractions

When adding and subtracting fractions, the first thing to do is find the CCD -least common denominate, or the smallest number that both denominators go into.

Find the LCD for the following fractions:

What is multiplied by the \qquad denominator has to be multiplied by the \qquad numerator

Then keep the denominator and perform the given operation on the numerators.

A fraction is in \qquad reduced form when the greatest common factor of the numerator and denominator is one.

Always make sure to simplify to lowest terms!

$$
\frac{6}{4}=\frac{3}{2}
$$

Always make sure to simplify to lowest terms! 4

Add the following Fractions: $2 \cdot \frac{2}{3}+\frac{5}{6}$ 2$\frac{4}{6}+\frac{5}{6}=\frac{9}{6}=\frac{3}{2} \frac{2}{2}+\frac{1}{2}$
$\frac{2}{2}=1$
$6 \cdot \frac{1}{3}+\frac{-4}{18}$
$\frac{6}{18}+\frac{-4}{18}=\frac{2}{18}=\frac{1}{9}$
$\frac{6}{6}$

Subtract the following Fractions:
$3 . \frac{5}{4}-\frac{1.4}{3.4} \quad \frac{15}{12}-\frac{4}{12}=\frac{11}{12}$

$$
4 \frac{2}{3}+\frac{5}{12}-\frac{1}{6} \cdot 2 \cdot \frac{8}{12}+\frac{5}{12}-\frac{2}{12}=\frac{11}{12}
$$

When multiplying and dividing fractions we DO NOT need a LCD-least common denominator

To multiply fractions, multiply the \qquad numerators together and the \qquad denominators together.

After multiplying straight across, always look to see if you can simplify

Multiply the following fractions

$$
\frac{4}{7} \cdot \frac{1}{3}=\frac{4 \cdot 1}{7 \cdot 3}=\frac{4}{21}
$$

$$
\frac{-2}{3} \cdot \frac{5}{8}=\frac{-2 \cdot 5}{3 \cdot 8}=\frac{-10}{24}=\frac{-5}{12}
$$

$$
\frac{5}{4} 5 \frac{4}{5} \quad \frac{2}{3} 5 \frac{3}{2}
$$

To divide two fractions, leave the first fraction as it is and then multiply by the
D reciprocal of the second fraction. Then look to see if you can simplify

Divide the following fractions

$$
\begin{aligned}
& \text { Divide the following fraction n } \\
& \frac{7}{2} \div \frac{2}{3}=\frac{7}{2} \cdot \frac{21}{2}=4
\end{aligned}
$$

$$
\frac{-3}{4} \div \frac{5}{8}-\frac{3}{4} \cdot \frac{8}{5}=\frac{-24}{20}=\frac{-12}{10}=\frac{-6}{5}
$$

When multiplying or dividing a whole number by a fraction, make the whole number a fraction by making the denominator a \qquad

$$
\frac{6}{1} \cdot \frac{3}{4} \quad \frac{6}{1} \cdot \frac{3}{4}=\frac{18}{4}=\frac{9}{2}
$$

$$
\frac{3}{5} \cdot \frac{1}{3} \div \frac{2}{10} \frac{3}{5} \cdot \frac{1}{3} \cdot \frac{1}{2}=\frac{3}{30}=\frac{1}{10}
$$

WS 1-4

1.14	2.75
$3.7 / 16$	$4.19 / 24$
$5.1 / 12$	$6.4 / 9$
$7.2 / 5$	$8.1 / 4$
$9.3 / 2$	$10 .-16 / 9$

