10-1 Solving Triangles

Objectives:
I can calculate the area of a non-right triangle
I can use inverse trig functions
I can solve a right triangle for lengths and sides

Explore Deriving an Area Formula
You can use trigonometry to find the area of a triangle without knowing its height.
(A) Suppose you draw an altitude $\overline{A D}$ to side $\overline{B C}$ of $\triangle A B C$. Then write an equation using a trigonometric ratio in terms of $\angle C$, the height h of $\triangle A B C$, and the length of one of its sides.

(B) Solve your equation from Step A for h.

$$
h=b \cdot \sin C
$$

(C) Complete this formula for the area of $\triangle A B C$ in terms of h and another of its side lengths: Area $=\frac{1}{2}$ base height
(D) Substitute your expression for h from Step B into your formula from Step C.

Area formulas of a non-right triangles

Area Formula for a Triangle in Terms of its Side Lengths

The area of $\triangle A B C$ with sides a, b, and c can be found using the lengths of two of its sides and the sine of the included angle: Area $=\frac{1}{2} b c \sin A$, Area $=\frac{1}{2} a c \sin B$, or Area $=\frac{1}{2} a b \sin C$.

$$
\frac{\text { lower case }}{\text { side }} \frac{\text { upper case }}{\text { angles }}
$$

(B) In $\triangle D E F, D E=9 \mathrm{in} ., D F=13 \mathrm{in}$., and $\mathrm{m} \angle D=57^{\circ}$.

Sketch $\triangle D E F$ and check that $\angle D$ is the included angle.
Find the area

$$
A=\frac{1}{2} a \cdot b \cdot \sin C
$$

Your Turn

Find the area of each triangle to the nearest tenth.
$\begin{aligned} \text { Area } & =\frac{1}{2}(12)(15) \sin 2 \frac{12 \mathrm{~mm}}{3.0} \\ & =S 0.3 \mathrm{~mm}^{2}\end{aligned}$

To "solve" a triangle means to find ALL side lengths and angle measures.

$$
\begin{array}{ll}
a= & A= \\
b= & B= \\
C= & C=
\end{array}
$$

REMEMBER
-Triangles have an angle sum of 180 degrees $\rightarrow 2$ angles -Pythagorean Theorem to find a missing side when you know two $\rightarrow 2$ sides
-Inverse Trig to find a missing angle

$$
\sqrt{x^{2}} \pm \div \cos ^{-1} \cos A
$$

Once you know the sine, cosine or the tangent of an acute angle, then you can use a calculator to find the measure of the angle.

For acute angle A:

$$
\begin{aligned}
& \text { If } \sin A=\underset{\sim}{x} \text {, then } \sin ^{-1}(\underset{\sim}{x}=m \nleftarrow A \\
& \text { angle trigratio sides } \\
& \text { (Sides) } \\
& \text { If } \cos A=x \text {, then } \cos ^{-1}(x)=m \measuredangle A \\
& \text { If } \tan A=x \text {, then } \tan ^{-1}(x)=m \measuredangle A
\end{aligned}
$$

SOM AAH TBA ${ }^{\text {Inverse Trig }}$
Find the measure of the indicated angle to the nearest degree (hint: calculator mode)

b)

c)

Find the exact value. Find alL possible rotations. acute angle $[0, \pi / 2]$

$$
\begin{aligned}
& \sin \left(\tan ^{-1} \frac{\sqrt{3}}{3}\right) \\
& \text { angle } \\
& \sin \frac{\pi}{6}=\frac{1}{2} \\
& \text { sides }
\end{aligned}
$$

$$
\sin ^{-1}\left(\cos \frac{\pi}{3}\right)
$$

$$
\frac{1}{0} \cos ^{-1}\left(\frac{\sin \frac{3 \pi}{2}}{\frac{1}{\rho(0,-1)}}\right.
$$

$$
\cos ^{-1}(-1) \rightarrow+
$$

Solve each right triangle. Round lengths to the nearest tenth and angles to the nearest degree.

$$
\begin{gathered}
\measuredangle P=53^{\circ} \quad p=17.6 \\
\measuredangle Q=90^{\circ} \quad q=22 \\
\measuredangle R=37^{\circ} \quad r=13.2 \\
a^{2}+b^{2}=c^{2} \rightarrow h 4 p \\
a^{2}+13.2^{2}=22^{2} \\
a^{2}+174.24^{=}=484 \\
-17^{4.24}-174.24 \\
\sqrt{a^{2}}=\sqrt{30^{9} .76} \\
a^{=}=17.6
\end{gathered}
$$

Solve each right triangle. Round lengths to the nearest tenth and angles to the nearest degree.

$$
B=\sin ^{-1}\left(\frac{8}{12}\right)
$$

$$
\begin{gathered}
\sqrt{a^{2}}=\sqrt{80} \\
a=
\end{gathered}
$$

$180-90-42=$

Your Turn!

Solve each right triangle. Round lengths to the nearest tenth and angles to the nearest degree.

A building casts a 33-m shadow when the Sun is at angle of 27° to the vertical. How tall is the building, to the nearest meter? How far is it from the top of the building to the tip of the shadow? What angle does a ray from the Sun along the edge of the shadow make with the ground?

Abstract

A shelf extends perpendicularly 7 in . from a wall. You want to place a $9-\mathrm{in}$. brace under the shelf, as shown. To the nearest tenth of an inch, how far below the shelf will the brace be attached to the wall? To the nearest degree, what angle will the brace make with the shelf and with the wall?

