

$$\frac{10}{5.0}$$

$$\frac{10}{10}$$

$$\frac{1$$

10-2 Law of Sines

Objectives: Colve non-right triangles

- 1. I can derive the law of sines using the area of a triangle.
 - 2. I can solve a triangle using the law of sines.
 - 3. I can identify 2 possible triangles and solve.

5.
$$B = 33^{\circ}$$
 $A = 104.1^{\circ}$
 $A = 104.1^{\circ}$
 $A = 33^{\circ}$
 $C = 42.9$
 $A = 21.4$
 $A = 12$
 $A = 12$

Solve the triangle given:

$$A = 76.7^{\circ}$$

$$B = 29.3^{\circ}$$

WWW

$$\frac{q}{ch7h7} = \frac{87}{\sin 74}$$

Explain 2 Evaluating Triangles When SSA is Known Information

When you use the Law of Sines to solve a triangle for which you know side-side-angle (SSA) information, zero, one, or two triangles may be possible. For this reason, SSA is called the ambiguous case.

Ambiguous Case		
Given a , b , and $m \angle A$.		
∠A is acute.		∠A is right or obtuse.
A h	a = h	b A
<i>a</i> < <i>h</i> No triangle	a = h One triangle	$a \le b$ No triangle
A b a h a	h a A	b A A
h < a < b Two triangles	$a \geq b$ One triangle	a > b One triangle

Given a=20, b=5, B=42°

Given: a=3, b=2, A=40°

Given: a=37, b=40, A=71°