
${ }^{47} \cos 52^{\circ}=\frac{r}{4 \cdot 4)}$
$47 \cdot \cos 52 \cdot r$

$$
\begin{aligned}
& P=90^{\circ} \\
& Q=52^{\circ} \\
& R=38^{\circ} \\
& P=47
\end{aligned}
$$

$$
q=
$$

$$
r=28.9
$$

$$
\begin{aligned}
& r=28.9 \\
& a^{2}+b^{2}=c^{2} \\
& a^{2}+2 \cdot 9^{2}=47^{2}
\end{aligned}
$$

$$
a^{a} 22^{8 \cdot a^{2}}=47
$$

$$
\begin{aligned}
& 10 \\
& \frac{a^{2}+3.2^{2}}{}=5^{2} \\
& \frac{\text { dx } x^{0.2}}{3.2 \text { a.d. }} \cos ^{-1} \cos x=\cos ^{-1} \frac{3.2}{5.0} \\
& X=\cos ^{-1}\left(\frac{3.2}{5.0}\right)
\end{aligned}
$$

Area of norright Δ :

$$
A=\frac{1}{2} \cdot \underbrace{a \cdot b}_{\text {sides }} \cdot \sin C \underbrace{\bigvee}_{\text {angle }}
$$

10-2 Law of Sines

Objectives: Solve non-right triangles

1. I can derive the law of sines using the area of a triangle.
2. I can solve a triangle using the law of sines.
3. I can identify 2 possible triangles and solve.

Law of Sines

Law of Sines
Given: $\triangle A B C$
$\frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c} \rightarrow$ Sole
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{C}{\sin C} \rightarrow$ solve
largest side b angle
"butt case"

ambiguous care

Find all the unknown measures using the given triangle. Round to the nearest tenth.
5.

- $A=104.1^{\circ}$
$B=33^{\circ}$

$$
\begin{aligned}
& \cdot c=42.9 \quad c \cdot \frac{\sin C}{1 s}=\frac{\sin 33.15}{12} \\
& -a=21.4 \\
& b=12
\end{aligned} \quad
$$

$$
\cdot C=42.9
$$

$$
\frac{\sin C}{C}=\frac{\sin B}{b}
$$

$$
\begin{aligned}
& a=21.4 \quad 18 \cdot \frac{12}{15}=12 \\
& b=15 \sin ^{-1} \sin C=\sin ^{-1}\left(\frac{\sin (33) \cdot 15}{12}\right)
\end{aligned}
$$

$$
\frac{a}{\sin A}-\frac{b}{\sin B}
$$

$\sin 14.1 \frac{9}{\sin 104.1}=\frac{12}{\sin 3.3} \cdot \sin 104.1$

$$
\begin{aligned}
& 4 . \\
& A=110^{\circ} \\
& \beta=28^{\circ} \frac{a}{\sin A}-\frac{b}{\sin B} \\
& \begin{array}{l}
c=42^{\circ} \sin 10^{\circ} a \\
=a=16 \cdot 0 \quad \sin B \quad \sin C=\frac{8}{\sin B 0^{\circ}} \cdot \sin 10^{\circ} \cdot \frac{c}{\sin 42}=\frac{8}{\sin 28} .
\end{array} \\
& \begin{array}{ll}
b=8 \\
c & 11.4 \\
a & =\frac{8}{\sin 285} \cdot \sin (10) \\
c
\end{array}= \\
& \frac{c}{\sin C}=\frac{b}{\sin B}
\end{aligned}
$$

Explain 2 Evaluating Triangles When SSA is Known Information
When you use the Law of Sines to solve a triangle for which you know side-side-angle (SSA) information, zero, one, or two triangles may be possible. For this reason, SSA is called the ambiguous case.

| Ambiguous Case a, b and $m \angle A$. |
| :--- | :--- |

Given $\mathrm{a}=20, \mathrm{~b}=5, \mathrm{~B}=42^{\circ}$

Given: $a=3, b=2, A=40^{\circ}$

Given: $a=6, b=8, A=35^{\circ}$

Given: $\mathrm{a}=37, \mathrm{~b}=40, \mathrm{~A}=71^{\circ}$

