Announcements
Turn in Golden Tickets (light yellow, "Q2") Clean out folders
ALL Q3 work due TODAY
$\mathrm{Rev} \rightarrow \mathrm{Fri}_{i}$
Test \rightarrow Tuesday!

$$
\begin{aligned}
& C=20^{\circ} \\
& \frac{b}{\sin B}=\frac{c}{\sin C} \\
& \sin 90^{\circ} \frac{b}{\sin 80^{\circ}}=\frac{4}{\sin 20^{\circ}} \cdot \sin 80^{\circ} \\
& b=11.5 \\
& a=11.5
\end{aligned}
$$

10-3 Law of Cosines

I can solve a triangle using the Law of Cosines
Area of noh-right \triangle.

$$
A=\frac{1}{2}=\frac{a}{2} \sin C
$$

Law of sines:

$$
\begin{aligned}
& \frac{a}{\sin \pi}=\frac{b}{\sin B}=\frac{c}{\sin C} \rightarrow \operatorname{sid} x \\
& \frac{\sin A}{a}=\frac{\sin B}{b}-\frac{\sin C}{c}=\operatorname{an} 4 \pi
\end{aligned}
$$

Explore Deriving the Law of Cosines

You learned to solve triangle problems by using the Law of Sines. However, the Law of Sines cannot be used to solve triangles for which side-angle-side (SAS) or side-side-side (SSS) information is given. Instead, you must use the Law of Cosines.
To derive the Law of Cosines, draw $\triangle A B C$ with altitude $\overline{B D}$. If x represents the length of $\overline{A D}$, the length of $\overline{D C}$ is $b-x$.

(A) Use the Pythagorean Theorem to write a relationship for the side lengths of $\triangle B C D$ and for the side lengths of $\triangle A B D$.

$$
x^{2}+h^{2}=c^{2}
$$

$$
\begin{gathered}
h^{2}+(b-x)^{2}=a^{2} \\
h^{2}+(b-x)(b-x)=a^{2}
\end{gathered}
$$

(B) Notice that c^{2} is equal to a sum of terms in the equation for a^{2}. Substitute c^{2} for those terms.

$$
a^{2}=a^{2}+b^{2} 2 b x+x^{2}
$$

$$
a^{2}=c^{2}+b^{2}-2 b x
$$

(C) In $\triangle A B D_{2} \cos A=\frac{x}{c}$. Solve for x. Then substitute into the equation you wrote for a^{2}. $C \cdot \cos A=\frac{x}{c} \cdot \operatorname{org}_{0} \bar{x}={ }^{c} \cdot \cos A$

$$
a^{2}=b^{2}-
$$

Reflect

1. The equation you wrote in Step D is the Law of Cosines, which is usually written as $a^{2}=b^{2}+c^{2}-2 b c \cos A$. Write formulas using $\cos B$ or $\cos C$ to describe the same relationships in this triangle.

To find the missing side length of a right triangle, you can use the Pythagorean Theorem. To find a missing side length of a general triangle, you can use the Law of Cosines.

Law of Cosines

For $\triangle A B C$, the Law of Cosines states that

$$
\Omega^{2}=b^{2}+c^{2}-2 b c \cos A
$$

$$
b^{2}=a^{2}+\underline{c}^{2}-2 a c \cos B
$$

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

$$
\text { Law of cosines: } a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

use: SSS,

$$
\begin{aligned}
& \text { Law of sines } \rightarrow \text { ASS, ASA, ASS } \\
& \text { angles } \\
& \text { Law of cosines } \rightarrow \text { SSS, SAS } \\
& \text { sides }
\end{aligned}
$$

(B) Step 1 Find the measure of the largest angle, $\angle C$.

$\square^{2}=L^{2}+L^{2}-2$	$\cos C$
$\cos C \approx$	Law of Cosines
Substitute.	
	Solve for $\cos C$.

$$
\mathrm{m} \angle C \approx \cos ^{-1}(\quad) \approx
$$

Solve for $\mathrm{m} \angle C$.
Step 2 Find another angle measure.

$$
\begin{aligned}
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& \square^{2}=\square^{2}+\square^{2}-2(\square)(\square) \cos B \quad \text { Substitute. }
\end{aligned}
$$

$\cos B \approx$ \qquad Solve for \qquad $\mathrm{m} \angle B \approx \cos ^{-1}(\square) \approx$

Solve for \qquad

Step 3 Find the third angle measure.

$$
\begin{aligned}
\mathrm{m} \angle A+\ldots & =180^{\circ} \\
\mathrm{m} \angle A & =
\end{aligned}
$$

Solve for $\mathrm{m} \angle A$.

$$
\begin{aligned}
& a=35 \quad A=43.4^{\circ} \\
& b=212 \\
& \text { - } B=55.6^{\circ} \\
& C=50.3 \quad C=81^{\circ} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& 3 s^{2}=\left(2^{2}+50.3^{2}-2(42)(s) \cdot 3\right) \cos A \\
& \mathrm{ralc} \rightarrow\left(35^{2}-42^{2}-50.3^{2}\right) \div(-2 \cdot 42 \cdot 50.3)= \\
& \cos ^{-1} 0.726 \operatorname{tas}^{-1} \cos A \\
& A=43.4^{\circ} \\
& \left(42^{2}-35^{2} \div 50.3^{2}\right) \div(-2 \cdot 35 \cdot 70 \cdot 3) \\
& \cos ^{-1}=
\end{aligned}
$$

A coast guard patrol boat and a fishing boat leave a dock at the same time at the courses shown. The patrol boat travels at a speed of 12 nautical miles per hour (12 knots), and the fishing boat travels at a speed of 5 knots. After 3 hours, the fishing boat sends a distress signal picked up by the patrol boat. If the fishing boat does not drift, how long will it take the patrol boat to reach it at a speed of 12 knots?

If Lucas hikes at an average of 2.5 miles per hour, ho long will it take him to travel from the cave to the waterfall? Round to the nearest tenth of an hour.

