Radical Review

Definition
nth root

$$
\sqrt[n]{b}=a \text { means } b=a^{n}
$$

- if $n \geq 2$ and even then a and b must be greater than or equal to 0 .
- if $n \geq 3$ and odd, then a and b can be any real number.
$\ln \sqrt[n]{b}:$
The symbol $\sqrt{ }$ is called the radical n is called the index
b is called the radicand

if there is no index, it is 2

Know your powers and roots

$$
\begin{array}{llll}
1^{2}=1 & \sqrt{1}=1 & 1^{3}=1 & \sqrt[3]{1}=1 \\
2^{2}=4 & \sqrt{4}=2 & 2^{3}=8 & \sqrt[3]{8}=2 \\
3^{2}=9 & \sqrt{9}=3 & 3^{3}=27 & \sqrt[3]{27}=3 \\
4^{2}=16 & \sqrt{16}=4 & 4^{3}=64 & \sqrt[3]{64}=4 \\
5^{2}=2 S & \sqrt{25}=5 & 5^{3}=12 S & \sqrt[3]{125}=5
\end{array}
$$

Evaluate

Simplifying
If $\mathrm{n} \geq 2$ is a positive integer and a is a real number, then

(1)pulling out a variable
(2) index even
(3)

$$
\begin{aligned}
& \text { odd exponent } \rightarrow \mid \text { labs Sal. } \\
& (-3)-3)=9 \quad(3)(3)=9
\end{aligned}
$$

Raise each of the following to the $\frac{1}{2}$ power.

$$
\begin{gathered}
1,4,9,16,25,36 \\
\downarrow \\
1,2,3,4,5,6 \\
a^{\left(\frac{1}{2}\right)}= \\
=\sqrt[2]{a}
\end{gathered}
$$

Raise each of the following to the $\frac{1}{3}$ power.

$$
\begin{aligned}
& 1,8,27,64,125,216 \\
& 123456 \\
& a^{\left(\frac{1}{3}\right)}=\sqrt[3]{9}
\end{aligned}
$$

Fractional exponent

$$
a^{\frac{1}{n}}=\sqrt[n]{a}
$$

n is an integer bigger then or equal to 2

$$
\begin{aligned}
& 1,8,27,64,125,216 a_{1-2}^{2} \\
& a^{\left(\frac{2}{3}\right)}=\sqrt[3]{a^{2}}=(\sqrt[3]{a})^{2} \\
& a^{\left(\frac{m}{n}\right)}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
\end{aligned}
$$

\# $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$ a is real, m / n is a rational number in lowest terms with n bigger or equal to
roots in the ground powers in the sky

Rewrite in exponent form

$\sqrt[4]{b}$

You try

$$
\sqrt[12]{r} \gamma^{\frac{1}{12}} \quad \sqrt[5]{d} d^{\frac{1}{5}}
$$

Adding, Subtracting, and Multiplying Radical expressions
Product Property of Radicals
If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, and $n \geq 2$ is an integer, then

$$
\begin{array}{r}
\sqrt[3]{a} \cdot \sqrt[(n)]{b}=\sqrt[n]{a b} \\
\sqrt[3]{x} \cdot \sqrt[3]{x} \quad \sqrt[3]{x \cdot y} \\
\sqrt[3]{x} \cdot \sqrt[3]{y}
\end{array}
$$

Quotient Property of Radicals

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, $b \neq 0, n \geq 2$ is an integer, then

Simplify Assuming all variables are greater then or equal to zero.

$$
\begin{array}{r}
\frac{-2 \sqrt[8]{54 a}}{\sqrt[8]{2 a^{4}}}-2 \sqrt[3]{\frac{9+a}{2 a^{4}}}=-2 \sqrt[3]{\frac{27}{a^{3}}} \\
-2 \cdot \sqrt[3]{27} \\
\frac{-2 \cdot 3 \sqrt[3]{a^{3}}}{a}=\frac{-6}{a}
\end{array}
$$

like terms

$$
\begin{aligned}
& \frac{5 \sqrt{x}-3 \sqrt{x}}{2 \sqrt{x}} \quad \begin{array}{c}
5 x-3 x \\
2 x
\end{array} \\
& 11 \sqrt{3 x y}+12 \sqrt{3 x y}=23 \sqrt{3 x y} \\
& 5 x \sqrt{2}-3 x \sqrt{2} \\
& 2 x \sqrt{2}
\end{aligned}
$$

