

12-1 Cross Sections and Solids of Rotation

Objectives:

I can identify the shapes of two-dimensional cross-sections of three-dimensional objects.

I can identify three-dimensional objects generated by rotations of two-dimensional objects.

I can use geometric shapes, their measures, and their properties to describe objects.

Prism: Same shape on top? bottom

Pyramid: Shape on bottom, (ones to a point

Nets

A **net** is a diagram of the surfaces of a three-dimensional figure that can be folded to form the three-dimensional figure. To identify a three-dimensional figure from a net, look at the number of faces and the shape of each face.

Complete each row of the table:

Cross Sections → 7 D

Recall that a *cross section* is a region of a plane that intersects a solid figure. Cross sections of three-dimensional figures sometimes turn out to be simple figures such as triangles, rectangles, or circles.

Example 1 Describe each cross section of each figure. Compare the dimensions of the cross section to those of the figure.

The cross section is formed by a plane that is parallel to the bases of the cylinder. Any cross section of a cylinder made by a plane parallel to the bases will have the same shape as the bases.

Therefore, the cross section is a circle with the same radius or diameter as the bases.

The lateral surface of the covertical direction. Therefore are straight line segments. The third side is a diameter the cross section must contain.	of the base of the co	cross section along	this surface
section is $a(n)$	triangle. Its ba		of Course
the cone and its leg length is		height of the cor	ne.

Describe each cross section of each figure. Compare the dimensions of the cross section to those of the figure. 3. Weather Management American School Sch

You can generate a three-dimensional figure by rotating a two-dimensional figure around an appropriate axis.

Example 2 Describe and then sketch the figure that is generated by each rotation in three-dimensional space.

A right triangle rotated around a line containing one of its legs

Leg \overline{BC} is perpendicular to ℓ , so vertex C traces out a circle as it rotates about ℓ , and therefore \overline{BC} traces out a circular base. The hypotenuse, \overline{AC} , traces out the curving surface of the cone whose base is formed by \overline{BC} . The figure formed by the rotation is a cone.

CONL

B A rectangle rotated around a line containing one of its sides

cylinder

Your Turn

Describe and then sketch the figure that is generated by each rotation in three-dimensional space.

5. A trapezoid with two adjacent acute angles rotated around a line containing the side adjacent to these angles

6. A semicircle rotated around a line containing its diameter

