12.2 Descriptive Statistics

Objectives:

1. I can describe a distribution by its shape, outliers, center, and spread.
2. I can find population percentages of a normal distribution (68-95-99.7 rule).

Vocabulary:
 Population: Set of all

Sample: A subset of the population

Parameter: Measures of a population
-Use $\mu=$ population mean

$$
\sigma=\text { population standard deviation call }
$$

Statistics: Measures of a sample

$$
\begin{aligned}
& \text {-Use } \begin{array}{l}
\bar{x}=\text { sample mean } \\
s=\text { sample standard deviation }
\end{array}
\end{aligned}
$$

1. SHAPE:

2. OUTLIERS: Data far away from the rest of the $80,92,76,101,27$ data. Formula to come ...
3. CENTER: Measures of central tendency:
4. Mean - arithmetic average of the data
5. Median Middle value when placed in order, or average of the two middle values
6. Mode - Most frequently occurring values) 5
7. SPREAD: Measure of the variability in the data
Mean - Median - Mode?

The average on the test was an 84 - Mean

The average test score puts you in the middle of the class - median

The average American student starts college at 18mode

$3,4,7$ Mean, Median and Mode

$$
\frac{3+4}{2}=3.5
$$

The mean of a list of n numbers $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is:

$$
\bar{X}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n \rightarrow \text { total }}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

the mean is strongly effected boutliets
The median of a list of n numbers $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ arranged in $5+10=$ order (either ascending or descending) is. 10,11

- The middle number is n is odd $1,3,5,10,11$
- The mean of the two middle numbers if n is even Median is resistant meaning it is not strongleffected by outliers

The mode of a list of numbers is the number that appears most frequently.

Find the mean, median, and mode for the following set of data:
12, 14, 10, 1, 9, 13, 17, 14, 16
$1,9,10,1 2 \longdiv { 1 3 }, 14,14,16,17$
mean: $\frac{106}{9}=11.8 \quad$ calculator

$$
\text { Stat } \rightarrow \text { edit } \rightarrow \text { enter }
$$

median: 13 mode. 14
mode:

$$
1,3,4,7,8 \rightarrow \text { none }
$$

$1,2,2,5,7,9,9 \rightarrow 2,9$

Why do we have all of these measures?
Example: On a cul-de-sac, you have 5 houses built for:
$\$ 200,000, \$ 200,000, \$ 200,000, \$ 200,000$, \$1,200,000

Find the median and the mean? Which one is a better measure?

$$
\text { mean: } 400,000
$$

Spread: When we use the mean to measure center, we use standard deviation

Measures variability

The standard deviation of the numbers $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is

$$
\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}} \quad \text { S.2 }
$$

where \bar{X} denotes the mean. The variance is σ^{2} the square of the standard deviation.

By hand this can be tedious- luckily we can do this in our calculator.

Find the standard deviation: Weights in grams of 30 loon chicks
$\begin{array}{llllllllllll}79.5 & 87.5 & 88.5 & 89.2 & 91.6 & 84.5 & 82.1 & 82.3 & 85.1 & 89.8\end{array}$
84.084 .888 .288 .282 .989 .889 .294 .188 .091 .1
91.887 .087 .788 .085 .494 .491 .386 .385 .786 .0

Spread: When we use the median to measure center, we use 5-Number Summary

Range $=$ maximum - minimum
Quartiles split the data into fourths Min
First Quartile $\left(Q_{1}\right)=$ the median of the lower half of the data uedsecond Quartile $=$ the median

Third Quartile $\left(Q_{3}\right)=$ the median of the upper half of the data May
Interquartile Range (IQR) measures the spread between Q_{1} and Q_{3}

Five number summary $=\left\{\right.$ minimum, Q_{1}, median, Q_{3}, maximum $\}$

BUT YOU SPEND TWICE AS MUCH
TIME WITH ME AS WITH ANYONE ELSE. I'M A CIEAR OUTUER.

Box and Whisker plots allow us to get a good visual of outliers: a number that makes one of the whiskers noticeably longer than the box:

RULE OF THUMB: a number is considered an outlier if it is more than $1.5 \times$ IQR below Q_{1} or above Q_{3}

$$
Q_{3}-Q_{1}
$$

Five number summary $=\left\{5, \frac{11}{Q_{1}}, 19.5, \frac{30.5}{Q_{3}}, 61\right\}$

$$
\begin{aligned}
& \text { 1.S(IQR) } \\
& \text { IQR= } 30.5-11=19.5 \\
& 1.5 \cdot 19.5=29.25 \\
& 30.5+29.25=59.75
\end{aligned}
$$

68-95-99.7 Rule

If the data for a population are normally distributed with mean μ and standard deviation σ then,
68% of the data lie between $\mu-1 \sigma$ and $\mu+1 \sigma$
95% of the data lie between $\mu-2 \sigma$ and $\mu+2 \sigma$
99.7% of the data lie between $\mu-3 \sigma$ and $\mu+3 \sigma$

Would a loon chick weighing 95 grams be in the top 2.5\%?

$$
\begin{array}{llllllllll}
79.5 & 87.5 & 88.5 & 89.2 & 91.6 & 84.5 & 82.1 & 82.3 & 85.1 & 89.8 \\
84.0 & 84.8 & 88.2 & 88.2 & 82.9 & 89.8 & 89.2 & 94.1 & 88.0 & 91.1 \\
91.8 & 87.0 & 87.7 & 88.0 & 85.4 & 94.4 & 91.3 & 86.3 & 85.7 & 86.0
\end{array}
$$

Survey Design: the goal of a survey is to get a sample which accurately reflects the entire population

Bias is a systematic favoritism for a certain outcome We avoid bias by getting a simple random sample all subjects have the same chance of being selected to be surveyed

Other sources of bias:

1. Nonresponse: subjects to not respond to the survey
2. Undercoverage: a portion of the population with some commonality is excluded from the survey
3. Voluntary response: the sample chooses itself by responding to a general appeal
4. Response bias: systematic difference between subject's response and the "truth" (i.e. lying)

Observational Study: a study that observes individuals and measures variables of interest, but does not attempt to influence responses. Cause and - Effect cannot be proven from an observational study, only from a:

Controlled experiment: has 3 parts

1. Random assignment of subjects
2. Treatment groups where treatments are applied
3. Comparison of the outcomes
