part C. $-\sqrt{2-3}$ part A.

 Radian Measure, Arc Length, and SectorsI can convert between degrees and radians
I can find exact trig values
I can find arc lengths
I can find the area of sectors
What are radians?

$$
\begin{aligned}
& C=2 \pi r \\
& =2 \cdot \pi \cdot 1 \\
& =2 \pi
\end{aligned}
$$

360° 2π

April 18, 2014

Find the exact value trig values:

You try: Find the exact value trig values
 $\uparrow \begin{array}{llll}y & \sqrt{2} & \sin (0) & \cos \left(\frac{\pi}{3}\right)\end{array} \tan \left(\frac{\pi}{4}\right)$

 $\sin \left(\frac{\pi}{6}\right)$
 $1 / 2$

Converting between degrees and radians:

$$
x^{\circ} \cdot \frac{\pi}{180^{\circ}}=\text { radians } \quad \text { xradians } \bullet \frac{180^{\circ}}{\pi}=\operatorname{deg} \text { rees }
$$

OR

$$
\frac{\mathrm{rad}}{\pi}=\frac{\mathrm{deg}}{180^{\circ}}
$$

Example:
Convert degrees to radians:
a) $\frac{90^{\circ}}{1} \cdot \frac{\pi}{180^{\circ}} \cdot \frac{90 \pi}{180} \cdot \frac{\pi \mathrm{~m}}{2} \cdot \frac{135^{\circ}}{1} \cdot \frac{\pi}{180^{\circ}}=\frac{135 \pi}{180}$

Convert radians to degrees:

$$
\text { c) } \begin{aligned}
&-\frac{3 \pi t}{4} \cdot \frac{180^{\circ}-\frac{540^{\circ}}{\not \pi}}{} \text { d) } \\
&-135^{\circ} \frac{16 \not t t}{9} \cdot \frac{180^{\circ}}{\not Z X}=\frac{2880^{\circ}}{9} \\
&=320^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. } \frac{60^{\circ}}{1} \cdot \frac{\pi}{180}=\frac{60 \pi}{180}=\frac{\pi}{3} \\
& \text { 6. } \frac{\pi}{2} \cdot \frac{180}{\pi}=\frac{180 \pi}{2}=90^{\circ} \\
& \text { II. } \sin \left(\frac{\pi}{2}\right)
\end{aligned}
$$

Recall:

Circumference of a circle

$$
C=2 \pi r
$$

Arc Length:

A proportion of the circumference of the circle.
You can use the measure of the arc (in degrees) to find its length (in linear units.)

Find the length of $\overparen{A B}$ $\frac{\widetilde{A B}}{360^{\circ}} \cdot 2 \pi r$

$$
\frac{30^{\circ}}{360^{\circ}} \cdot \frac{2 \pi \cdot(0)}{1}=\frac{1260 \pi}{360}=\frac{7 \pi}{2} \text { in }
$$

1099 in
17.
$\frac{120}{360} \cdot 2 \cdot \pi \cdot 6 \mathrm{~cm} x$

$4 \pi \mathrm{~cm}$
20.
angle

Example:
Find the length of $\overparen{A B}$

$$
\text { arclength }=r \theta
$$

$$
\frac{12: \frac{12}{4}}{1}=\frac{\pi 1 \pi}{4}=3 \pi \mathrm{~cm}
$$

Example:
Find the indicated measure of each:

1. Length of $\overparen{A B}$

2. Circumference

3. Radius

Recall:

Area of a circle

$$
A=\pi r^{2}
$$

Sectors:

A sector of a circle is the region (area) bounded by two radii of the circle and their intercept arc.

Degrees
Sectorarea $=\left(\frac{\overparen{A B}}{360^{\circ}}\right) \frac{\pi r^{2}}{\text { area }}$
$i n^{2}, m i^{2}$

Example:
Find the area of the sector:

23-25: arclength $=\left(\frac{\overparen{A B}}{360^{\circ}}\right) 26$.
Find Radius

