12-4 Chords, Secants, and Tangents

- I can name a chord, secant, and tangent line and their relationship with circles.
- I can describe the relationship between angles and chords when the angles are created inside, outside and on the circle.
- I can describe the relationship between opposite angles of inscribed quadrilaterals.

Tangent, Secant Lines and Chords

Point of Tangency tangent line: intersects circle at exactly one point

A

If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.

If two lines intersect a circle, there are three places where the lines can intersect.

ON

$$
m \angle A D B=\frac{1}{2} m \overparen{A B}
$$

Find the measure of the indicated arc or angle.

you try
3. $m \angle B A C$
4. $m \overparen{B C}$

Another type of ON

$$
\begin{gathered}
m \angle 1=\frac{1}{2} m \widehat{A B} \\
m \angle 2=\frac{1}{2} m \overparen{B C A}
\end{gathered}
$$

Find the measure of angle 1.

You Try:
Find the measure of angle 1.

IN

You try: Find the measure of angle 1

you try

d)

$$
\frac{270-90}{2}=90^{\circ}
$$

A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary.

D, E, F, and G lie on some circle, C, if and only if $m \angle D+m \angle F=180^{\circ}$ and $m \angle E+m \angle G=180^{\circ}$

QUAD 360°
if opposite angles are
supplementary 180°

$$
\begin{array}{lll}
1 & 2 \\
3 & 4
\end{array} \quad \begin{aligned}
& 1+4=180 \\
& 2+3=180
\end{aligned}
$$

Find x .

$$
\left\{\begin{array}{l}
3 x-8)^{\circ} \\
3 x-8+5 x+2=180 \\
8 x-6=180 \\
\frac{8 x}{8}=\frac{186}{8} 2325
\end{array}\right.
$$

Find the value of x.

$$
\begin{aligned}
& \text { HW } \underset{H \overrightarrow{H F}}{3}, \underset{A B}{\overrightarrow{A B}} \stackrel{8}{\square D} \\
& \overline{A B} \underset{\substack{\text { selvent } \\
\text { chod }}}{\overleftrightarrow{A B}} \underset{\substack{\text { lecemt } \\
\text { sem }}}{\text { lin }}
\end{aligned}
$$

