Factoring

I can factor the greatest common factor out of an expression. I can factor an expression by grouping. I can factor quadratic expressions in standard form.

Find the greatest common factor (GCF) of the terms

$$
\begin{aligned}
& 4 x, 12 \quad \underline{6} x^{3}, \underline{12 x^{2}}, \underline{15} x \\
& 4 x \\
& 4 x^{3} y^{4}, 8 x^{2} y^{3}, 12 x y^{2} \\
& 4 x y^{2}
\end{aligned}
$$

Factor out the GCF

$$
\begin{aligned}
& \frac{4 a^{2} b^{2}}{2 a b^{2}} \underbrace{-10 a b}_{2 a b^{2}} \underbrace{+18 a^{3} b^{4}}_{2 a b^{2}} \\
& 2 a b^{2}\left(2 a-5 b+9 a^{2} b^{2}\right)
\end{aligned}
$$

Factor out the GCF

$$
\begin{aligned}
& -2 b^{3}+10 b^{2}+8 b \\
& 2 b\left(-b^{2}+5 b+4\right)-2 b\left(b^{2}-5 b-4\right)
\end{aligned}
$$

You Try
Factor out the GCF

$$
\frac{-5 v^{2}}{-5^{2}}+\frac{10}{-5_{y}}
$$

Factor out the Greatest Common Binomial Factor

$$
\frac{4 x(x-3)+5(x-3)}{(x-3)(4 x+5)}
$$

You Try
Factor out the Greatest Common Binomial Factor

$$
\begin{aligned}
& 4 a(a-3)+3(a-3) \\
& (a-3)(4 a+3)
\end{aligned}
$$

Factor by grouping

$$
\begin{gathered}
4 x-4 y+a x-a y \\
4(x-y)+a(x-y) \\
(x-y)(4+a)
\end{gathered}
$$

Factor by grouping

$$
\begin{gathered}
6 x^{2}+9 x_{1}^{\prime}-10 x-15 \\
3 x(2 x+3)-5(2 x-3) \\
(2 x+3)(3 x-5)
\end{gathered}
$$

How to Factor a Quadratic

Factoring quadratics in the form $a x^{2}+b x+c$

1. Factor out the GCF
2. Multiply a and c
3. Find two factors of ac that add to b
*If ac is negative, factor.s must have opposite signs
*If ac is positive, factors must have same (+ or -) signs
4. Re-write equation with b split up into factors
5. Find the GCF by grouping
6. Factor the GCF of the whole

$$
(x) \rightarrow \text { when } a=l_{\text {Factorescon }}
$$

Solve: $x+1=0 \quad x-7=0$

$$
x=-1 \quad x=7
$$

$$
(2 a+1)(a+4)
$$

YOUR TURN!
Factor each quadratic expression

$$
\begin{aligned}
& x^{2}+6 x+8 \\
& (x+4)(x+2)
\end{aligned} \quad(x-2)(x-8)
$$

Factor each quadratic expression

$$
\begin{aligned}
& \begin{array}{l}
56+10 x-x^{2} \\
-x^{2}+10 x+56 \\
-1\left(x^{2}-10 x-56\right) \\
-(x+4)(x-14)
\end{array}
\end{aligned}
$$

YOUR TURN!
Factor each quadratic expression

$$
\begin{array}{lcc}
30 & 4 x^{2}-13 x+3 \\
2 x^{2}(13) x+15 & 30 & 4 x^{2}-12 x^{2}-x+3 \\
\downarrow & \frac{15}{56} & 4 x(x-3)-1(x-3) \\
2 x^{2}+3 x+10 x+15 & (4 x-1)(x-3) \\
x(2 x+3)+5(2 x+3) & \\
(2 x+3)(x+5) &
\end{array}
$$

