1.

$$
\begin{aligned}
& V= l \cdot w \cdot h \\
&=(x+5)(x+1)(x) \\
&(x+5)\left(x^{2}+x\right) \\
& x^{3}+x^{2}+5 x^{2}+5 x \\
& x^{3}+6 x^{2}+5 x
\end{aligned}
$$

$$
\begin{aligned}
& (x+y+z)^{2}=(x+y+z(x+y+z))^{2.3 .3 x} 3.2^{4 x} \\
& x^{\circ} \cdot x \cdot x
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}+2 x y+2 x z+2 y z
\end{aligned}
$$

2-2 Binomial Theorem

(Book 6-3 pgs. 341-344)
Objectives:
I can apply the binomial theorem to expand binomials
I can calculate coefficients of a expanded binomials utilizing patterns from Pascal's triangle

Expand:
$(a+b)^{n}$ for $n=1,2,3,4$, and 5
See if you can discover and patterns for exponents and coefficients

$$
\begin{aligned}
& (a+b)^{0}= \\
& (a+b)^{2}= \\
& (a+b)^{2}=\frac{1 a+1}{a^{2}+2 a b+1 b} \\
& (a+b)^{3}=1 a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=1 a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+1 b^{4} \\
& (a+b)^{2}=a_{i}^{2}+5 a^{4} b^{1}+10 a^{3} b^{2}+10 a^{3} b^{3}+5 a^{1} b^{4} \\
& (a+b)^{0}+b^{0}+\lambda_{i}^{i} b^{2} \\
& 1 \text { S. } 1010 \mathrm{~S} \\
& 1 a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3} 15 a^{2} b^{4}+6 a b^{5}+1 b^{6} \\
& (a+b)^{(2)}= \\
& 1 a^{7} 7 a^{4} b 2 a^{4} a^{2} 39352171
\end{aligned}
$$

Identify the patterns in the expanded form of

 $(a+b)$The exponents of a start at \square and [increas decrease by 1 each term.

The exponents of b start at
 and increase decrease] by \qquad each term.

The sum of the exponents are \bigcap in each term.
The coefficients are the same as row \bigcap in Pascals triangle.

Pg. 342

$(x+y)^{7}$
Step 1 Use a calculator to determine the values of ${ }_{7} C_{0}, 7 C_{1},{ }_{7} C_{2},{ }_{7} C_{3},{ }_{7} C_{4}, 7 C_{5}, 7 C_{6}$, and ${ }_{7} C_{7}$.

Step 2 Expand the power as described by the Binomial Theorem, using the values of ${ }_{7} C_{0},{ }_{7} C_{1},{ }_{7} C_{2},{ }_{7} C_{3},{ }_{7} C_{4}$, ${ }_{7} C_{5},{ }_{7} C_{6}$, and ${ }_{7} C_{7}$ as coefficients.

$$
\begin{aligned}
(x+y)^{7}= & \square x \square y+\square x \square y+\square x y+\square x y y \\
& +\square x \square y+\square x \square y+\square x \square y+\square x \square y
\end{aligned}
$$

Step 3 Simplify.

$$
\begin{aligned}
(x+y)^{7}= & x+\square x \square y+\square x \square y+\square x-y+\square x \square y \\
& +\square x \square y+\square x y+y
\end{aligned}
$$

Using Binomial Theorem to Expand pg. 343

$(x-2)^{3}$
Step 1 Identify the values in row 3 of Pascal's Triangle.
$1,3,3$, and 1
Step 2 Expand the power as described by the Binomial Theorem, using the values from Pascal's Triangle as coefficients.

$$
(x-2)^{3}=1 x^{3}(-2)^{0}+3 x^{2}(-2)^{1}+3 x^{1}(-2)^{2}+1 x^{0}(-2)^{3}
$$

Step 3 Simplify.

$$
(x-2)^{3}=x^{3}-6 x^{2}+12 x-8
$$

Use the Binomial Theorem to expand $(x-y)^{4}$.
Pg. 344

$$
\begin{aligned}
& (4 x)^{3}=(4 x)(4 x)(4 x)=4^{3} x^{3} \\
& (4 x)^{6}=4^{6} \cdot x^{6}
\end{aligned}
$$

\square

$$
\begin{aligned}
& \begin{aligned}
10.3^{\text {rd }} \begin{array}{rl}
(3 x-2 y)^{3} & a=3 x \\
10(3 x)^{3}(-2 y)^{2} & b=2 y
\end{array}
\end{aligned}
\end{aligned}
$$

