2-3 Factoring Polynomials (Book 6.4 pg. 353-)

Objectives:

- I can factor a polynomial by GCF, special factoring, and factor by grouping
- I can find multiple representations of factored polynomials

Factor the following:

$$
x^{2}-7 x+10 \quad 2 x^{2}-3 x-2
$$

Greatest Common Factors pg. 355-356

(A) $6 x^{3}+15 x^{2}+6 x$

$6 x^{3}+15 x^{2}+6 x$	Write out the polynomial.
$x\left(6 x^{2}+15 x+6\right)$	Factor out a common monomial, an x.
$3 x\left(2 x^{2}+5 x+2\right)$	Factor out a common monomial, a 3.
$x(2 x+1)(x+2)$	Factor into simplest terms.

Note: The second and third steps can be combined into one step by factoring out the greatest common monomial.
(B) $2 x^{3}-20 x$
\qquad ${ }^{3}-$ \qquad x

Write out the polynomial.
\qquad $\left(x^{2}-10\right)$

Factor out the greatest common monomial.

Factor.

$$
3 x^{3}+7 x^{2}+4 x
$$

$$
4 a^{4} b+8 a^{3} b^{3}-10 a^{2} b^{4}
$$

Special Factoring Patterns pg. 355

Remember the factoring patterns you already know:
Difference of two squares: $a^{2}-b^{2}=(a-b)(a+b)$
Perfect square trinomials: $a^{2}+2 a b+b^{2}=(a+b)^{2}$

$$
a^{2}-2 a b+b^{2}=(a-b)^{2}
$$

There are two other factoring patterns that will prove useful:
Sum of two cubes: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
Difference of two cubes: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

Factor.

$$
x^{3}-27 \quad 27 x^{3}+64
$$

$8 x^{3}+64 \quad x^{3}+4 \quad 4 x^{2}-36$

Factoring by Grouping pg. 357
(A) $x^{3}+x^{2}+x+1$

Write out the polynomial.
Group by common factor.
Factor.
Regroup.

$$
\begin{aligned}
& x^{3}-x^{2}+x-1 \\
& \frac{\left(x^{3}-x^{2}\right.}{x^{2}}+(x-1) \\
& x^{2}(x-1)+1(x-1) \\
& \left(x^{2}+1\right)(x-1)
\end{aligned}
$$

(B) $x^{4}+x^{3}+x+1$

Write out the polynomial.
Group by common factor.
2.3 Factor.
3.2

Regroup.

Substitute this into the expression and simplify.
Apply sum of two cubes to the first term.

$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$

9.

$$
\begin{aligned}
& 10 x^{3}-80 \quad x^{3}-x x^{3}+x \\
& 10\left(x^{3}-8\right) a=x \\
& \left.a^{3}-b^{3}=(a-1)(a+x+6+5)^{3}\right) \\
& 10(x-2)\left(x^{2}+2 x+4\right)
\end{aligned}
$$

10.

$$
\begin{aligned}
& x^{2}\left(2 x^{2}+7 x+5\right) \quad 25=10 \\
& x^{2}\left[2 x^{2}+2 x+5 x+5\right]^{25}
\end{aligned}
$$

