2-4 Dividing Polynomials
 (Book 6.5 - pg 366-370)

Objectives:

- I can divide polynomials using long division.
-I can divide polynomials using synthetic division.

Vocab

Divisor $23 \leftarrow$ Quotient
(12) $277 \leftarrow$ Dividend

24
37
36
$1 \leftarrow$ Remainder

Dividing Polynomials - Long Division

Steps: 1. Write as a division problem w/ dividends \& divisor in descending order, leaving spaces for missing terms in the dividend (0x)
2. Divide leading terms and write the result above the 1 st term in the dividend

3. Multiply the result from \#2 by the divisor \& write the product under the dividend
4. Put () around result from \#3, distribute the subtraction sign \& then add
5. Bring down remaining terms \& repeat until there are no remaining terms in the dividend
6. Answer can be written in several ways

$$
\begin{aligned}
& \text { pg. } 366 \text { Book Example 1A } \\
& \frac{\left(4 x^{3}+2 x^{2}+3 x+5\right)}{\text { Standard form }} \div\left(x^{2}+3 x+1\right) \\
& 1 x^{2}(4 x)=4 x^{3} \\
& 4 x-10 x^{2}(-10)=10 x^{2} \\
& \frac{x^{2}+3 x+1}{}-\left(4 x^{3}+2 x^{2}+3 x+5\right. \\
& -\frac{\left(4 x^{3}+12 x^{2}+4 x\right)}{10} \\
& -10 x^{2}-x+5 \\
& \frac{-\left(+6 x^{2}+30 x+10\right)}{29 x+15} \\
& \begin{array}{c}
29 x+15 \rightarrow \text { remainder } \\
4 x^{3}+2 x^{2}+3 x+5=\left(x^{2}+3 x+1\right)(4 x-10)+29 x+15
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left(6 x^{4}+5 x^{3} \pm 2 x+8\right) \div\left(x^{2}+2 x-5\right)
\end{aligned}
$$

dividend = (divisor) (quotient)tremainden

$$
\begin{array}{r}
6 x^{4}+5 x^{3}+2 x+8=\left(x^{2}+2 x-5\right)\left(6 x^{2}-7 x+44\right) \\
-121 x+228
\end{array}
$$

Use long division to find the quotient and remainder. Write the result in the form dividend $=($ divisor $)($ qoutient $)+$ remainder and then carry out a check.
dividend $=($ divisor $)$ (qoutient $)+$ remainder and then carry out a check.
3. $\quad\left(15 x^{3}+8 x-12\right) \div\left(3 x^{2}+6 x+1\right)$ quotient $\quad 3 x^{2}(S x)=1 S x^{3}$
(NB) Example: Divide the polynomial using long division.

$$
\begin{aligned}
& \left(x^{4}-3 x^{3}+6 x^{2}-3 x+5\right) \div\left(x^{2}+1\right) \\
& x^{2}-3 x+5 \\
& x^{2}+1 \sqrt{x^{4}-3 x^{3}+6 x^{2}-3 x+5} \\
& \frac{-\left(x^{4}+0 x^{3}+x^{2}\right)}{-3 x^{3}+5 x^{2}-3 x+5} \\
& \frac{-\left(-3 x^{3}-3 x\right)}{5 x^{2}+5} \\
& \frac{-\left(5 x^{2}+5\right)}{0}
\end{aligned} \quad x^{4}-3 x^{3}+\left(x^{2}-3 x+5=\left(x^{2}+11\right)\right.
$$

Dividing Polynomials - Synthetic division:

Can only be used to divide by a linear function steps:

1. Write the terms of the dividend in descending order. Write the coeff. of the dividend in the first row using zeros for any missing terms not found in the dividend.
2. Write the zero, r, of the divisor ($x-r$), in the box.
3. Drop the 1st coeff. to the last row.
4. Multiply 1st coeff. by r \& put product under the $2 n d$ coeff.
5. Add product from \#4 to 2 nd coeff. \& write the sum in the last row.
6. Repeat \#4 \& \#5 until all coeff. have been used.
7. Write answer by putting variables behind the \#'s in the last row. Start with 1 degree less than the dividend polynomial.
pg. 370
(B) $\left(4 x^{4}-3 x^{2}+7 x+2\right) \div\left(x-\frac{1}{2}\right)$

Find a. Then write the coefficients and a in the synthetic division format.
Find $a=$ \square

Bring down the first coefficient. Then multiply and add for each column.

```
4 0
```

4
Write the result.

$$
\left(4 x^{4}-3 x^{2}+7 x+2\right)=
$$

\square
Check.
pg. 369
(A) $\left(7 x^{3}-6 x+9\right) \div(x+5)$
pg. 370

Your Turn

Given a polynomial $p(x)$, use synthetic division to divide by $x-a$ and obtain the quotient and the (nonzero) remainder. Write the result in the form $p(x)=(x-a)($ quotient $)+p(a)$. You may wish to perform a check.
6. $\left(2 x^{3}+5 x^{2}-x+7\right) \div(x-2)$
(NB) Example: Divide the polynomial using synthetic division.

$$
\left(x^{3}+3 x^{2}-4 x-12\right) \div(x+3)
$$

pg. 369

Long Division

$$
\begin{array}{r}
3 x^{2}+10 x+20 \\
x - 2 \longdiv { 3 x ^ { 3 } + 4 x ^ { 2 } + 0 x + 1 0 } \\
\frac{-\left(3 x^{3}-6 x^{2}\right)}{10 x^{2}+0 x} \\
\frac{-\left(10 x^{2}-20 x\right)}{20 x+10} \\
\frac{-20 x-40}{50}
\end{array}
$$

Synthetic Substitution

$$
\begin{aligned}
& 2 \\
& 2
\end{aligned} \begin{array}{cccc}
3 & 4 & 0 & 10 \\
& 6 & 20 & 40 \\
\hline & 3 & 10 & 20 \\
\hline
\end{array}
$$

(NB) Example: Divide the polynomial using any method.

$$
\left(x^{3}+4 x^{2}+x-6\right) \div(x-1)
$$

