$$
\begin{aligned}
& \text { 13. } x^{3}-4 x^{2}-11 x+2 \\
& \begin{array}{rlrll}
-2) & -4 & -11 & 2 \\
\downarrow & -2 & 12 & -2 \\
\hline 1 x^{2} & -6 & 1 & (0)
\end{array} \\
& \begin{array}{lll}
(x+2)\left(x^{2}-6 x+1\right) & \begin{array}{ll}
a=1 \\
b=-6 & \sqrt{32} \\
x^{2} \\
c=1 & (44 \\
x^{2}
\end{array} \\
x=\frac{6 \pm \sqrt{(-6)^{2}-4(1)(1)}}{2(1)}=\frac{6 \pm \sqrt{32}}{2}
\end{array} \\
& -\frac{6}{2} \pm \frac{\sqrt{2}}{2} \\
& x=3 \pm 2 \sqrt{2} \\
& x=-2 \\
& x=3+2 \sqrt{2} \\
& x=3-2 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 14. } x^{3}-4 x^{2}+2 x+4 \\
& \text { 2) } \begin{array}{lll}
1 & -4 & 4 \\
\downarrow & -4 & -4 \\
1-2 & -2 & (12) \\
x^{2} x & +2 \\
(x-2)\left(x^{2}-2 x-2\right) & -2 \\
x=2 & \frac{2 \pm 2 \sqrt{3}}{2} \\
x=\frac{2 \sqrt{3}}{2}
\end{array} \\
& \begin{array}{l}
x=\sqrt{2}
\end{array}
\end{aligned}
$$

3-2 Graphing Polynomial Functions
 (Book 5.4 pg. 293-306)

Objectives:

- I can graph a polynomial function by hand and using technology
- I can find end behavior of a polynomial function
- I can identify zeros, x-intercepts, and factors of a polynomial function
- I can determine the multiplicity of a polynomial function

Graphing Polynomials Task

$$
\begin{aligned}
& X^{3} \rightarrow \text { opposite } \\
& X^{4} \rightarrow \text { same } \\
& f(x)=(x+3)(x-2) \\
& x=-3,2
\end{aligned}
$$

End Behavior

Using a graphing calculator find the end behavior of the following functions. Where do the ends go?

Does it change if I have a negative coefficient? How?

$$
\begin{aligned}
& D:(-\infty, \infty) \text { same } \\
& R:(-\infty, 0] \\
& \text { As } x \rightarrow-\infty, f(x) \rightarrow-\infty \\
& \text { As } x \rightarrow \infty, f(x) \rightarrow-\infty
\end{aligned}
$$

End Behavior

Using a graphing calculator find the end behavior of the following functions. Where do the ends go?

Function	Domain
Range	End Behavior
$(-\infty, \infty)$	$(-\infty, \infty)$
As $x \rightarrow+\infty, f(x) \rightarrow \infty$	
As $x \rightarrow-\infty, f(x) \rightarrow-\infty$	

Pos LC: $R \rightarrow \infty L \rightarrow-\infty$
Neg LC: $R \rightarrow-\infty L \rightarrow \infty$

Zeros, x-intercepts, and factors

Find the factors of $f(x)=x^{2}+4 x+3$

$$
(x+1)(x+3)
$$

Now find the x-intercepts of $f(x)=x^{2}+4 x+3$

$$
(-1,0) \quad(-3,0)
$$

Lastly find the zeros of $f(x)=x^{2}+4 x+3$

$$
x=-1,-3
$$

What is the same between the factors, x-intercepts, and zeros of this function?

$$
\text { Multiplicity }(x-1)^{\prime}(x+2)^{2}(x+1)^{5}
$$

The power of the factor determines the nature of the intersection at the point $x=a$. (This is referred to as the multiplicity.)

Straight intersection:

$(x-a)^{1} \quad$ The power of the zero is 1 . $(x+1)$
Tangent intersection: (bounce)
$(x-a)^{\text {even }}$ The power of the zero is even.
$(x-1)^{2}$ or $(x-1)^{4}$
Inflection intersection: (like a slide through)
$\overline{(x-a)_{n_{0+1}}^{\text {odd }}}$ The power of the zero is odd.

$$
(x-2)^{3} \quad(x-2)^{5}
$$

(A) Use a graphing calculator to graph the cubic functions $f(x)=x^{3}, f(x)=x^{2}(x-2)$, and $f(x)=x(x-2)(x+2)$. Then use the graph of each function to answer the questions in the table.

Function	$f(x)=x^{3}$	$f(x)=x^{2}(x-2)$	$f(x)=x(x-2)(x+2)$
How many distinct factors does $f(x)$ have?			
What are the graph's x-intercepts?			
Is the graph tangent to the x-axis or does it cross the x-axis at each x-intercept?			
How many turning points does the graph have?			
How many global maximum values? How many local?			
How many global minimum values? How many local?			

Use a graphing calculator to graph the quartic functions $f(x)=x^{4}, f(x)=x^{3}(x-2)$,
$f(x)=x^{2}(x-2)(x+2)$, and $f(x)=x(x-2)(x+2)(x+3)$.Then use the graph of each function to answer the questions in the table.

Functlon	$f(x)=x^{4}$	$f(x)=x^{3}(x-2)$	$f(x)=x^{2}(x-2)$		
$(x+2)$				$)$	$f(x)=x(x-2)$
:---					
$(x+2)(x+3)$	\left\lvert\,	How many distinct			
---	---	---	---	---	---
factors?	\quad	What are the x-intercepts?			
:---	:---	:---	:---		
Tangent to or cross the x-axis at x-intercepts?					
How many turning points?					
How many global maximum values? How many local?					
How many global minimum values? How many local?				\right.	

[^0]2. What determines how many x-intercepts the graph of a polynomial function in intercept form has?
3. What determines whether the graph of a polynomial function in intercept form crosses the x-axis or is tangent to it at an x-intercept?

\[

$$
\begin{aligned}
& \left.f(x)=x^{69}(\underline{x}+2)=9 \underline{x}-3\right)^{=0} \\
& x^{3}+\frac{1}{4} \uparrow \quad \begin{array}{lll}
x & =0 & m \cdot l \\
x=-2 & \text { mpraind }
\end{array} \\
& \sqrt{x}=3 \mathrm{~m} . \mathrm{l}^{\prime \prime}
\end{aligned}
$$
\]

$$
\begin{aligned}
& f(x) \neq(x-4)(\underline{x}-1)(\underline{x}+1)(\underline{x}+2) \\
& x=4 \mathrm{~m} \cdot 1 \\
& x=1 \mathrm{~m} \cdot 1 \\
& x=-1 \mathrm{~m} \cdot 1 \\
& \mathrm{X}=-2 \mathrm{~m}: 1 \\
&
\end{aligned}
$$

Ex. 8 Find the zeros, the multiplicity, end behavior and graph the following:
a. $f(x)=-x^{2}(x-4)$

b. $f(x)=(x+3)^{2}(x-2)^{3}(x-4)$
$X=-3 \mathrm{~m}: 2$ bounce
$X=2 \mathrm{~m}: 3$ inflection
$X=4$ m.l straight
c. X^{6} even $+\uparrow \uparrow$

$$
f(x)=(x+2)^{3}(x-1)^{2}
$$

$$
1(x+2)^{3}(x-1)^{2}
$$

$$
x=-2 \text { m.3 inflect. }
$$

$$
x=1 m \cdot 2
$$

pg. 305

Write a function in intercept form for the given graphs whose intercepts are integers. Assume the constant factor of a is either 1 or -1 .

global/absolute: WHOLE graph local/relative: part of the graph

[^0]: Reflect

