3-2 Graphing Polynomial Functions (Book 5.4 pg. 293-306)

Objectives:

- I can graph a polynomial function by hand and using technology
- I can find end behavior of a polynomial function
- I can identify zeros, x-intercepts, and factors of a polynomial function
- I can determine the multiplicity of a polynomial function

Zeros, x-intercepts, and factors

Find the factors of
$$f(x) = x^2 + 4x + 3$$

$$(x+1)(x+3)$$

Now find the x-intercepts of $f(x) = x^2 + 4x + 3$

Lastly find the zeros of $f(x) = x^2 + 4x + 3$

What is the same between the factors, x-intercepts, and zeros of this function?

Multiplicity
$$(\chi + 1)^2 (\chi + 1)^5$$

The **power** of the factor determines the nature of the intersection at the point x = a. (This is referred to as the multiplicity.)

Straight intersection:

 $(x - a)^{1}$ The power of the zero is 1.

Tangent intersection: (DOUN(Q)) $(x-a)^{\text{even}}$ The power of the zero is even.— $(X-1)^2$ or $(X-1)^4$ Inflection intersection: (like a slide through)

 $(x-a)^{\text{odd}}_{\text{no+}}$ The power of the zero is odd.

A Use a graphing calculator to graph the cubic functions $f(x) = x^3$, $f(x) = x^2(x-2)$, and f(x) = x(x-2)(x+2). Then use the graph of each function to answer the questions in the table.

Function	$f(x)=x^3$	$f(x)=x^2(x-2)$	f(x) = x(x-2)(x+2)
How many distinct factors does $f(x)$ have?			
What are the graph's x-intercepts?			
Is the graph tangent to the x-axis or does it cross the x-axis at each x-intercept?			
How many turning points does the graph have?			
How many global maximum values? How many local?			
How many global minimum values? How many local?			

(B) Use a graphing calculator to graph the quartic functions $f(x) = x^4$, $f(x) = x^3(x-2)$, $f(x) = x^2(x-2)(x+2)$, and f(x) = x(x-2)(x+2)(x+3). Then use the graph of each function to answer the questions in the table.

Function	$f(x)=x^4$	$f(x)=x^3(x-2)$	$f(x) = x^2(x-2)$ $(x+2)$	f(x) = x(x-2) (x+2)(x+3)
How many distinct factors?				
What are the x-intercepts?				
Tangent to or cross the x-axis at x-intercepts?				
How many turning points?				
How many global maximum values? How many local?				
How many global minimum values? How many local?				

Reflect

2.	What determines	how many x -	intercepts the	graph of a	a polynomial	function in	intercept form has?
----	-----------------	----------------	----------------	------------	--------------	-------------	---------------------

3. What determines whether the graph of a polynomial function in intercept form crosses the x-axis or is tangent to it at an x-intercept?

B) f(x	= -(x - 4)(x - 4)	-1)(x+1)(x+1)	- 2)					
_	entify the end bel		-/					
As	$x \to +\infty, f(x)$	→						
As	$x \to -\infty, f(x)$	→						
	entify the graph's find where the gr						determined by the x-intercepts	
	e x-intercepts are				, x =	7.		
		Sign of the	Sign	Sign	Sign	Sign	Sign of	
	Interval	Constant Factor	of x – 4	of x – 1	of x+1	of x + 2	f(x) = -(x-4)(x-1) (x+1)(x+2)	
	x<	-		-		-		
Ī	< x <	_		_		+		
F	< x <	_		+		+		
L	< x <	_		+		+		
	x>	-		+		+		
So	, the graph of $f(x)$) is above the x-	axis on th	e interval	3		4.0	
	< x <	and < x	<, a	ınd			ľ	
it's	below the x-axis	on the intervals	s x <	,	< x <].	×	
an	d x >						-4 -2 0 2 4	
Sko	etch the graph.							© Нова
							1	ton Milfi
								lin Harco
								urt Publi
								© Houghton Mifflin Harcourt Publishing Company
								npary
				298			Lesson 4	

$$f(x) = -(x-4)(x-1)(x+1)(x+2)$$

$$X = 4 \quad \text{m.} 1$$

$$X = -1 \quad \text{m.} 1$$

$$X = -2 \quad \text{m.} 1$$

$$X = -2 \quad \text{m.} 1$$

$$X = -2 \quad \text{m.} 1$$

Write a function in intercept form for the given graphs whose intercepts are integers. Assume the constant factor of a is either 1 or -1.

Turning Point > switch inc/dec

