3-3 Graphing Polynomial Functions from Standard Form

Objectives:

$$
5 x^{3}+2 x^{2}-5 x+1
$$

- I can find the zeroes of a polynomial by using the factor theorem, remainder theorem, and rational roots theorem
-I can then graph the polynomial by hand once I have found the zeros

Discussion: $\quad(x+\neq)(x-\#)^{2}$
In order to GRAPH $x^{3}-8 x^{2}+19 x-12$ by hand, what information do we need? factored form What form do we need the polynomial to be in?

How can we get it to that form?

$$
\begin{aligned}
& \text {-Factor } \\
& \text {-synthetic }
\end{aligned}
$$

(1) GCF
(2) Synthetic division remainder (3)* Quadratic \rightarrow Factor

Recall: Finding the Zeros of a Polynomial
-Factoring: Find GCF first, then may use special factoring, factoring by grouping, or quadratic factoring
-Factor Theorem Use to test a factor from
-Remainder Theorem rational roots theorem
-Rational Roots Theorem: Helps determine possible rational roots using $x= \pm \frac{\text { factors of constant }}{\text { factors of leading coefficient }}$

Recall: Graphing a polynomial from factored form

-Find zeros by setting factors equal to zero and solving -Use degree to determine end behavior
-Sign Charts
-Multiplicity

Ex. Find the zeros of the polynomial, then graph by hand $f(x)=x^{5}+7 x^{4}+12 x^{3}$

$x^{3}(x+3)(x+4) \left\lvert\, \begin{gathered}12 \cdot 12 \\ 12 \\ 2 \\ 2\end{gathered}\right.$

$x=-3 m \cdot 1$
$+$
$x=-4 \mathrm{~m}: 1$
Ex. Find the zeros of the polynomial, then graph by hand

$$
\begin{aligned}
& f(x)=x^{0}+3 x^{2}-4 x-12 \\
& \pm \frac{(1,2,3,4,6,12}{1} \\
& \text { 3] } \begin{array}{rrrr}
1 & 3 & -4 & -12 \\
4 & 3 & 18 & 42 \\
\hline 1 & 6 & 14 & x
\end{array} \\
& \text { 2) } \begin{array}{lll}
1 & 6 & 14 \\
3 & -4 & -12
\end{array} \quad(x-2)(x+3)(x+2) \\
& \begin{array}{r}
121012 \\
\hline 156 \\
x^{2} x
\end{array} \\
& \begin{array}{l}
(x-2)\left(x^{2}+5 x+6\right) \\
(x-2)(x+2)(x+3)
\end{array} \\
& x^{3}+
\end{aligned}
$$

Ex. Find the zeros of the polynomial, then graph by hand $f(x)=x^{4}+4 x^{3}+x^{2}-6 x$

$$
f(x)=x^{3}-x^{2}-5 x-3
$$

$$
\begin{aligned}
& \text { 1. } x^{3}-8 x^{2}+19 x-12 \\
& 1 \downarrow 1-8 \quad 19-12 \\
& \downarrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. } 11 \\
& \text { 2.gcf }-41 \\
& \text { 3.gcf } \rightarrow x^{2} \\
& \text { 4. }-2
\end{aligned}
$$

