16.

$$
\begin{aligned}
& \begin{array}{cccc}
\downarrow & 2 & 0 & -2 \\
\hline-1 & 0 & 10 \\
x^{2} & x & \# & 0
\end{array} \\
& (x+2)\binom{-x^{2}}{m+1}^{x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } x^{4}-3 x^{3}-10 x^{2} \\
& x^{2}\left(x^{2}-3 x-10\right) \quad \begin{array}{r}
1-10=-10 \\
x^{2} \\
+2-5
\end{array} \\
& x^{2}(x+2)(x-5) \quad x^{2}-0 \\
& x=0 m \cdot 2 \quad x^{4}+ \\
& x=-2 \quad m: 1 \\
& x=5 \quad m=1
\end{aligned}
$$

3-4 Function Analysis
Objectives: limit notation
I can identify the key features of a graph using the following vocabulary: end behavior (limits), multiplicity, increasing, decreasing, domain, range, odd, even, zeros/roots, maximums and minimums.
I can graph a polynomial function by hand and using technology

End Behavior:

Graph the following functions on your calculator: $-\infty$

$$
f(x)=x^{3}-4 x^{2}-5 x-3 \quad g(x)=x^{3}
$$

What happens as we continue to zoom out?

Where is each end going?

$$
\operatorname{deg} \cdot 3
$$

End Behavior is determined by the degree of the polynomial and the coefficient of the leading term. The mathematical notation is written using limits.

$$
\lim _{x \rightarrow-\infty} f(x)=
$$

$$
\lim _{x \rightarrow \infty} f(x)=
$$

Even Degree: both ends go in the same direction (+) coeff.
$(-)$ coeff. both down

Name the degree $\&$ the sign of the coefficient of the leading term based on the end behavior:

deg : odd

deg: even

Find the zeros, graph and analyze including end behavior using limits:
 local, $\left(-2.54,0 \mathrm{ex}^{x} \lim _{x \rightarrow-\infty} f(x)=-\infty\right.$
 $(-0.13,6.06)$

