4-1 Review of Complex Numbers

Objective: Students will be able to:
Know the parts of a complex number
Know how to add, subtract, and multiply 2 complex numbers
Know what a conjugate is and how to find one

Definition
Complex numbers are numbers of the form $a+b i$, where a and b are real numbers. The real number a is called the real part and the number b is called the imaginary part.

Identify the real and imaginary parts of each complex number.

Write each of the following as a pure imaginary number.

$$
\begin{aligned}
\sqrt{-16} & =\sqrt{16 \cdot-1} \\
= & \sqrt{-3}=\sqrt{3} \sqrt{-1} \\
& =\sqrt{4 i} \\
& \sqrt{-18} i \\
& =\sqrt{18} \sqrt{-1} \\
& 39 \\
& 3 \sqrt{3} i
\end{aligned}
$$

You Try

$$
\begin{array}{ll}
\begin{array}{l}
\sqrt{-12} \\
2 \sqrt{3} i
\end{array} & \sqrt{-5} \\
& \sqrt{-36}
\end{array}=6 i
$$

$$
\begin{aligned}
& \text { You Ty } \\
& -2-\sqrt{-8} \\
& -2-2 \sqrt{2} i \\
& r=-2
\end{aligned}
$$

$$
\begin{aligned}
& \text { add life terms } \\
& (4-3 i)+(-2+5 i) \\
& 2+2 i \\
& (4+\sqrt{-25})+(-6-\sqrt{-16}) \\
& (4+5 i)+(-6-4 i) \\
& -2+i
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vouty } \\
& \left(\begin{array}{l}
4=\sqrt{-4})+(-7+\sqrt{-9}) \\
(4-2 i)+(-7+3 i)^{3 i} \\
-3+i
\end{array}\right. \\
& (4-2 i)-(-2+7 i) \\
& 6-9 i
\end{aligned}
$$

Remember from before:

$$
\sqrt[n]{a} \sqrt[n]{b}=\sqrt[n]{a b}
$$

only works when $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers

$$
\begin{aligned}
& n d \sqrt{\sqrt{2}} \text { are real numbers } \\
& \sqrt{-4} \sqrt{-25}=\sqrt{-4-2 S}=\sqrt{100} \\
& \neq 1 D
\end{aligned}
$$

This means that

$$
2 i \cdot 5 i=10 i^{2}=1
$$

$$
\begin{aligned}
& \sqrt{a} \sqrt{b} \neq \sqrt{a b} \text { if } a<0 \text { or } b<0 \\
& \sqrt{4} \sqrt{25}=\sqrt{9-2 s}=10 \\
& 2 . S=10
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{-9} \sqrt{-36} \\
& (2+\sqrt{-36})(4-\sqrt{-25})
\end{aligned}
$$

Complex Conjugate

If $a \oplus b i$ is a complex number, then its conjugate is defined as $a \in b i$

$$
a-b i
$$

$a+b i$

Name the conjugate of the following complex numbers

$$
\begin{array}{lll}
3+2 i & 4-3 i & -16+32 i \\
3-2 i & 4+3 i & -16-32 i
\end{array}
$$

$$
\begin{array}{cc}
0-17 i & +4 i \\
0+17 i & -4 i \\
17 i &
\end{array}
$$

Multiply (What Happens?) \rightarrow Cancers out i's \cup
$(4+3 i)(4-3 i)$
$16-12 i+12 i-9)^{2}$ 位 1$)$

