

Use the Pythagorean Theorem to find the missing side length of each 30-60-90 degree triangle.

#5

Trigonometric Relationship of Complimentary Angles

$$\sin \theta = \cos \theta = \cos(90 - \theta) = \cos(90 - \theta) = \cos(90 - \theta) = \cos(90 - \theta) = \cos(90 - \theta)$$

Creating the "Unit Circle" with Special Right Triangles (Quadrant I only)

For those who want to use this...

	0°	30°	45°	60°	90°
sine	0	1	2	3	4
cosine	4	3	2	1	0

	0°	30°	45°	60°	90°
sine	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$
cosine	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$

	0°	30°	45°	60°	90°
sine	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosine	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	<u>1</u> 2	0