

Use the Pythagorean Theorem to find the missing side length of each 45-45-90 degree triangle. Once you see a pattern use it.
1.

\#2

\#4 Label the sides of the triangle.

Use the Pythagorean Theorem to find the missing side length of each 30-60-90 degree triangle.
\#5

Write both triangles in terms of x.

Use the patterns you discovered to find the missing side lengths of each special right triangle.

Use the patterns you discovered to find the missing side lengths of each special right triangle.

Trigonometric Relationship of Complimentary Angles

$$
\begin{aligned}
& \sin \theta= \\
& \cos \theta= \\
& \sin (90-\theta)= \\
& \cos (90-\theta)=
\end{aligned}
$$

Creating the "Unit Circle" with Special Right Triangles (Quadrant I only)

Evaluate the following trig functions

$\sin 30^{\circ}=$
$\cos 30^{\circ}=$
$\cos 90^{\circ}=$
$\sin 45^{\circ}=$
$\tan 0^{\circ}=$
$\tan 45^{\circ}=$

Honors: $\csc 30^{\circ}=$
$\cot 45^{\circ}=$

For those who want to use this...

	$\mathbf{0}^{\circ}$	$\mathbf{3 0}^{\circ}$	$\mathbf{4 5}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\boldsymbol{}}$
sine	0	1	2	3	4
cosine	4	3	2	1	0

	$\mathbf{0}^{\circ}$	$\mathbf{3 0 ^ { \circ }}$	$\mathbf{4 5 ^ { \circ }}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$
sine	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$
cosine	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$

	$\mathbf{0}^{\circ}$	$\mathbf{3 0 ^ { \circ }}$	$\mathbf{4 5}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$
sine	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosine	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

