6-4 Angle Vocabulary

Congruence:

Measures are equal

m∠BAC = m∠DEF "is equal to"

Angles are congruent

 $\angle BAC \cong \angle DEF$ "is congruent to"

If $m \angle BAC = m \angle DEF$, then $\angle BAC \cong \angle DEF$.

If $\angle BAC \cong \angle DEF$, then $m \angle BAC = m \angle DEF$.

Angle Addition Postulate: Where two angles add to give you a

EX. If
$$m \angle A=45$$
 and $m \angle B=20$, find $m \angle C$.

EX. If
$$m \angle A = 36$$
 and $m \angle C = 53$, find $m \angle B$. M(C) $A + M + C = 63$

$$36 + \times = 53$$

 $-36 + 17 = 36$
 $X = 17$

Angle Bisector: A ray that divides an ______ in 2 equal parts.

If BD bisects \angle ABC, then \angle ABD $\cong \angle$ DBC.

EX: If $m \angle ABD=30$, find $m \angle DBC$.

EX: If $m \angle ABC = 82$, find $m \angle ADB$ and $m \angle DBC$.

Adjacent Angles: Two angles that share a common side and common vertex (two angles that are <u>right next</u> each other)

 $\angle A$ and $\angle B$ are adjacent angles.

Non-Examples:

EX: $\angle A$ and $\angle B$ are complimentary angles. If $m\angle A=24$ find $m\angle B$. M < A + M < B = 90

EX: $\angle A$ and $\angle B$ are supplementary angles. If $m\angle A = 2x + 5$ and $m\angle B = x - 7$, find the value of x.

$$M < A + M < B = 180$$
: $3x = 180 = 60.6$
 $3x - 3 = 180 + 3$
 $3x - 3 = 180 + 3$

Linear Pair: Two angles that are ____ adjacent __ and ___ supplimentary (two angles that form a line)

∠A and ∠B are a Linear Pair

If $\angle A$ and $\angle B$ form a linear pair, then $m\angle A + m\angle B = 180$

Vertical Angles: Two angles non-adjacent each other when two lines intersect (angles across from each other). Vertical angles are Congruent.

 $\angle 1$ and $\angle 3$ are vertical angles $\angle 2$ and $\angle 4$ are vertical angles

Use the figure at the right:

a. Are $\angle 1$ and $\angle 2$ adjacent?

b. Are $\angle 3$ and $\angle 4$ a linear pair?

c. Are $\angle 1$ and $\angle 4$ a vertical angles?

Decide whether the statement is *always, sometimes,* or *never* true.

a. If $m \angle 4 = 130$, then $m \angle 3 = 50$.

b.
$$m \angle 1 + m \angle 3 = m \angle 2 + m \angle 4$$
.

Use the figure at the right:

a. If
$$m \angle 8 = 94$$
, then $m \angle 6 = 94$.

b. If m∠7 = 47, then m∠9 =
$$\frac{47}{7}$$

c. If
$$m \angle 7 = 15$$
, then $m \angle 6 = 165$ \\ \(\sqrt{80} - 15 \) =

To show that angles are <u>Lquel</u> or <u>Congruent</u> in a diagram, we can mark them. We can only say that angles are <u>Lquel</u> or <u>congruent</u> if they are marked the <u>Same</u>.

Example:

Write what you know from each of the given statements? **How** do you know that?

∠ABD and ∠DBC are complimentary angles BD bisects ∠ABC.

<ABD + < DBC are complimentary

<ABD + < DBC = 90 are complimentary

BD bisects < ABC by bisector

ABD = DBC by congruence
</pre>