7-1 Sequences

Warm up:
Write the next 3 terms for the following:
a. $\{1,4,9,16,25,36,49\}$
b. $\{13,21,29,37,45,53,61\}$
c. $\left\{15,5, \frac{5}{3}, \frac{5}{9}, \frac{5}{27}, \frac{5}{81}, \frac{5}{24}\right\}$

1. Describe the pattern that you see in the sequence of figures above.

2. Assuming the sequence continues in the same way, how many dots are there at 3 minutes? At 4 minutes?

17
3. Write an equation to represent the pattern
4. Make a table of values and graph

$$
\begin{aligned}
& y=m x+b \\
& \text { foo } \begin{array}{l}
\downarrow \\
\text { initial }
\end{array}
\end{aligned}
$$ Value

\min	dots
x	y
0	1
1	5
2	9
3	13

Arithmetic Sequence
arithmetic - sequence with common difference between successive terms (repeated addition)
explicit - each term is defined independently
equation $f(n)=a+d n$ for $n \geq 0$
recursive - use the previous term to define the following terms

$$
\begin{aligned}
& f(0)=\underline{a}, f(n)=f(n-1)+d \quad n \geq 1
\end{aligned}
$$

$$
\begin{aligned}
& a=\text { initial value } n=0 \\
& \text { d= common difference } \\
& \text { n= term \# }
\end{aligned}
$$

growing dot
$a=1$
$a=4$
$\exp f(n)=1+4 n$
rec $f(0)=1 f(n)=f(n-1)+4$

1. Describe the pattern that you see in the sequence of figures above. 2. Assuming the sequence continues in the same way, how many dots are there at 5 minutes? $96 \text { dots }$

3. Write an equation to represent the pattern

$$
\begin{aligned}
& y=a \cdot b^{x} \\
& \text { intr rate } \\
& \text { 4. Make a table of values } \\
& y=3.2^{x}
\end{aligned}
$$

min dots

x	y
0	3
1	6
2	12
3	24

Geometric Sequence
geometric - sequence with a common factor between successive terms (repeated multiplication)
explicit:

$$
f(n)=a r^{n}
$$

recursive: $\quad f(n)=r \cdot f(n-1)$, for $f(0)=a$

$$
\begin{aligned}
& a=\text { initial value } n=0 \\
& r=\text { Common vatic } \\
& n=\text { term }
\end{aligned}
$$

Write explicit and recursive rules to represent the table

$$
\begin{array}{lll}
a=3 & \exp f(n)=3 \cdot 2^{n} \\
r=2
\end{array}
$$

$$
\begin{aligned}
& 2 \exp f(n)=3 \\
& \text { rec } f(0)=3, f(n)=f(n-1) \cdot 2
\end{aligned}
$$

Write explicit and recursive rules to represent the table
(B)

\boldsymbol{n}	1	2	3	4	5	\cdots	$j-1$	j	\cdots
$\boldsymbol{f}(\boldsymbol{n})$	$\frac{1}{25}$	$\frac{1}{5}$	1	5	25	\cdots	$a r^{(j-1)}$	$a r^{j}$	\cdots

$$
\begin{array}{ll}
a=1 / 25 & \exp _{f(0)}=\frac{1}{125} \cdot 5^{n} \\
r=5 & f(0) \frac{1}{125} \\
\operatorname{rec}^{f(n)} F(n-1) \cdot 5
\end{array}
$$

Your Turn
Write the explicit and recursive rules for a geometric sequence given a table of values.
4.

\boldsymbol{n}	0	1	2	3	4	5	6	\cdots
$\boldsymbol{f}(\boldsymbol{n})$	$\frac{1}{27}$	$\frac{1}{9}$	$\frac{1}{3}$	1	3	9	27	\cdots

5.

\boldsymbol{n}	1	2	3	4	5	6	7	\cdots
$\boldsymbol{f}(\boldsymbol{n})$	0.001	0.01	0.1	1	10	100	1000	\cdots

Example 2 Given either an explicit or recursive rule for a geometric sequence, use a table to generate values and draw the graph of the sequence.
(A)

Explicit rule: $f(n)=2 \cdot 2^{n}, n \geq 0$
Use a table to generate points.

n	0	1	2	3	4	5	\cdots
$f(n)$	2	4	8	16	32	64	\cdots

Plot the first three points on the graph.
(B)

Recursive rule: $f(n)=0.5(n-1), n \geq 1$ and $f(0)=169$ Use a table to generate points.

n	0	1	2	3	4	5	0	\cdots
$f(n)$	16	8	4	2	1	$1 / \varepsilon_{2}$	$1 / 4$	\cdots

Given either an explicit or recursive rule for a geometric sequence, use a table to generate values and draw the graph of the sequence.
6. $f(n)=3 \cdot 2^{n-1}, n \geq 1$

\boldsymbol{n}	1	2	3	4	5	\cdots
$\boldsymbol{f}(\boldsymbol{n})$						\cdots

7. $f(n)=3 \cdot f(n-1), n \geq 2$ and $f(1)=2$

\boldsymbol{n}	1	2	3	4	5	\cdots
$\boldsymbol{f}(\boldsymbol{n})$						\cdots

Solve

The explicit rule is $f(n)$ \square , $n=\geq 1$.

The recursive rule is $f(n)=$ \square . $f(n-1), n \geq 2$ and $f(1)=\square$.
\square
The final round will have 1 match, so substitute 1 for $f(n)$ into the explicit rule and solve for n.

$$
\begin{aligned}
f(n) & =64 \cdot\left(\frac{1}{2}\right)^{n-1} \\
\square & =64 \cdot\left(\frac{1}{2}\right)^{n-1} \\
\square & =\left(\frac{1}{2}\right)^{n-1} \\
\left(\frac{1}{2}\right) \square & =\left(\frac{1}{2}\right)^{n-1}
\end{aligned}
$$

Two powers with the same positive base other than 1 are equal if and only if the exponents are equal.

$$
\begin{aligned}
\left(\frac{1}{2}\right)^{\square} & =\left(\frac{1}{2}\right)^{n-1} \\
\square & =n-1 \\
& =n
\end{aligned}
$$

The winner must play in \qquad rounds.

Justify and Evaluate

The answer of 7 rounds makes sense because using the explicit rule gives $f(7)=$ \qquad and the final round will have 1 match(es). This result can be checked using the recursive rule, which again results in $f(7)=$ \qquad

Your Turn

Write both an explicit and recursive rule for the geometric sequence that models the
 situation. Use the sequence to answer the question asked about the situation.
8. A particular type of bacteria divide into two new bacteria every 20 minutes. A scientist growing the bacteria in a laboratory begins with 200 bacteria. How many bacteria are present 4 hours later?
$a=200$
$f(n)=200 \cdot 2^{n}$
$=200 \cdot 2^{12}$
$n \cdot 3 \cdot 4=12$ $=819,200$

Elaborate
9. Describe the difference between an explicit rule for a geometric sequence and a recursive rule.
\qquad
\qquad
10. How would you decide to use $n=0$ or $n=1$ as the starting value of n for a geometric sequence modeling a real-world situation?
\qquad
\qquad
\qquad
11. Essential Question Check-In How can you define a geometric sequence in an algebraic way? What information do you need to write these rules?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
13.

$$
\begin{aligned}
& a=1024 \\
& r=\frac{1}{4} \\
& n=? \\
& f(n)=1024\left(\frac{1}{4}\right)^{n} \\
& \frac{1}{1024} \frac{1024\left(\frac{1}{4}\right)^{n}}{1044} \\
& \frac{1}{1024}=\frac{1^{n}}{4} \\
& \left(\frac{1}{4}\right)^{5}=\frac{1}{4}^{n} \\
& n=5 \quad 5 \text { games }
\end{aligned}
$$

January 08, 2015

