

January 08, 2015

Solve

The explicit rule is f(n), $n \ge 1$. The recursive rule is f(n) = 0, f(n-1), $n \ge 2$ and f(1) = 0

The final round will have 1 match, so substitute 1 for f(n) into the explicit rule and solve for *n*.

$$f(n) = 64 \cdot \left(\frac{1}{2}\right)^{n-1}$$
$$= 64 \cdot \left(\frac{1}{2}\right)^{n-1}$$
$$= \left(\frac{1}{2}\right)^{n-1}$$
$$\frac{1}{2} = \left(\frac{1}{2}\right)^{n-1}$$

Two powers with the same positive base other than 1 are equal if and only if the exponents are equal.

$$\begin{pmatrix} \frac{1}{2} \end{pmatrix}^{n-1} = \left(\frac{1}{2} \right)^{n-1}$$
$$= n-1$$
$$= n$$

The winner must play in _____ rounds.

9.	Describe the difference between an explicit rule for a geometric sequence and a recursive rule.
10.	How would you decide to use $n = 0$ or $n = 1$ as the starting value of n for a geometric sequence modeling a real-world situation?
11.	Essential Question Check-In How can you define a geometric sequence in an algebraic way? What information do you need to write these rules?

