$$
\begin{array}{ll}
a=0.3 \\
r=\frac{1}{10} & \frac{000003}{0.3}=\frac{0.3\left(\frac{1}{10}\right)^{n}}{0.3} \\
n=? 5 & .00001=\left(\frac{1}{10}\right)^{n} \\
& \left(\frac{1}{10}\right)-\left(\frac{1}{n 0}\right)
\end{array}
$$

$$
\begin{aligned}
& a=5000 \\
& r=1.04 \\
& \text { solat }+4 \\
& n=9
\end{aligned}
$$

7-3 Exponential Review

I can apply exponential properties and use them
I can model real-world situations using exponential functions

Warm-Up

1. Find the next three terms in the sequence

2, 6, 18, 54, \qquad , \qquad , \qquad
2. Fill in the table, then plot the points (label your scale)

If we connected the points, what do you notice about the graph?

Have you ever seen a graph like this before?

EXPONENTIAL FUNCTION

$$
\begin{aligned}
& f(x)=a(b) x)_{\substack{x \\
\text { time } \\
\text { Initial Value } \\
\text { (y-intercept) }}}^{\substack{\text { Basement } \\
\text { (Multiplier) rate }}} \\
& f(n)=a \cdot r^{n}
\end{aligned}
$$

Graph the following functions on a calculator and sketch. Be sure to plot the y-intercept

b. $\underbrace{f(x)=\left(\left(\frac{1}{2}\right)\right)^{x}}$

What did you notice about the graphs and their equations?

$$
f(x)=a(b)^{x}
$$

Exponential Growth and Decay

When $b>1$, the function represents exponential growth When $0<b<1$, the function represents exponential decay

$$
f(x)=2\left(\left(\frac{\pi}{3}\right)\right)^{x}
$$

Determine whether each function represents growth or decay
a. $f(x)=13\left(\frac{1}{3}\right)^{x}$
b. $g(x)=\left(\frac{3}{2}\right)^{x}$
\square G
Write one equation represent decay grow $+h$

$$
f(x)=2\left(\frac{4}{2}\right)^{5}
$$

decay

$$
f(x)=69\left(\frac{1}{2}\right)^{x}
$$

$$
\begin{aligned}
& \text { growth/decay } \\
& f(t)=a(1 \pm r)_{\text {decay }}^{\text {growth }} t \rightarrow \text { time } \\
& \text { initial } \\
& \begin{array}{rr}
3 \% & 229 \% \\
.03 & .0025
\end{array}
\end{aligned}
$$

John researches a baseball card and find that it is currently worth $\$ 3.25$. However, it is supposed to increase in value 11% per year. pg $686 \quad f(t)=\underline{a}(1 \oplus)$
a) Write an exponential equation to represent this situation
b) How much will the card be worth in 10 years?

$$
=3.25(1+.11)^{10}=\$ 9.23
$$

c) Use your graphing calculator to determine in how many

$$
\begin{array}{ll}
\begin{array}{l}
\text { years will the card be worth } \$ 26 . \\
x \rightarrow \text { time } \\
y \rightarrow \$
\end{array} & y_{1}=3.25(1+.11)^{x} \\
y_{2}=26
\end{array}
$$

You Try!
On federal income tax returns, self employed people can depreciate the value of business equipment. Suppose a computer valued at $\$ 2765$ depreciates at a rate of 30% per year. pg $704 f(t)=a(1 \pm r)^{t}$
a) Write an exponential equation to model this situation

$$
2765(1-3)^{+7}
$$

b) How much will this computer be worth in 5 years?

$$
\$ 464.71
$$

c) Use your graphing calculator to determine in how many years will the computer be worth $\$ 350$.

$$
\begin{aligned}
& y_{1}=2765(1-.3)^{x} \\
& y_{2}=350 \\
& \quad \text { intersect } 5.79 \\
& \text { yrs }
\end{aligned}
$$

The population of Orem in 1950 was 4,000 and was increasing at a rate of 2.6% per year.
a) Predict the population of Orem in $\underline{1975}$ and 2000.

$$
f(t)=4000(1 t .026)^{t}
$$

$1975 \rightarrow f(25) 7599$
$2000 \rightarrow f(50) \quad 14,435$
b) Using your graphing calculator, predict when Orem's population will hit 200,000 people.

$$
\begin{array}{r}
152.41 \mathrm{yrs} \\
1950+152.41 \\
2102.41
\end{array}
$$

The half-life of Carbon-14 is 5700 years. If a fossil decayed from 15 grams to 1.875 grams, how old is the fossil? (use your calculator)

Compound Interest Formula

$$
A(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

P is the principal

r is the annual interest rate

n is the number of compounding periods per year
t is the time in years

Write an equation then find the final amount for each

 investment.a. $\$ 1000$ at 8% compounded semiannually for 15 years

$$
A(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

You Try!

b. $\$ 1750$ at 3.65% compounded daily for 10 years

Using a calculator, determine how many years it will take for the amount to reach $\$ 4000$.

Investigate the growth of \$1 investment that earns 100\% annual interest ($r=1$) over 1 year as the number of compounding periods, n , increases.

Compounding schedule	n	$1\left(1+\frac{1}{n}\right)^{n}$	Value of A
annually	1		
semiannually	2		
quarterly	4		
monthly	12		
daily	365		
hourly	8760		
every minute	525600		

What does the value of A approach?

The value e is called the natural base

The exponential function with base e, $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$, is called the natural exponential function.

$$
e \approx 2.71828182827
$$

what you need to know is $e \approx 2.7$

Evaluate $f(x)=e^{x}$ for
a. $x=2$
b. $x=1 / 2$
c. $x=-1$

Many banks compound the interest on accounts daily or monthly. However, some banks compound interest continuously, or at every instant, by using the continuous compounding formula.

Continuous Compounding Formula

If P dollars are invested at an interest rate r, that is compounded continuously, then the amount, A, of the investment at time t is given by

$$
A(t)=P e^{r t}
$$

A person invests $\$ 1550$ in an account that earns 4\% annual interest compounded continuously.
a. Write an equation to represent this situation
b. Using a calculator, find when the value of the investment reaches $\$ 2000$.

$$
\operatorname{Pg} 730 A(t)=P e^{r t}
$$

An investment of \$1000 earns an annual interest rate of 7.6\%.

Compare the final amounts after 8 years for interest compounded quarterly and for interest compounded continuously.

CHECK:

-What is the difference between growth and decay?
-What does each piece of the equation $\mathrm{y}=\mathrm{a}(\mathrm{b})^{\mathrm{x}}$ represent?

