$$
\text { 9. } \begin{aligned}
& h(x)=x^{2}-2 x+1 \\
& 0=x^{3}-2 x+1 \\
& a=x \quad 0=(x-1)^{2} \\
& b=1 \\
& 2 a b=2 \cdot x-1=-2 x \\
& 0=(x-1)^{2} \\
& 0=(x-1)(x-1) \\
& x+1=0 \\
& x-1=0 \\
& x=1 x^{2} \quad x=1
\end{aligned}
$$

8.

$$
\begin{aligned}
& 5 h^{2}+2 h+5=7 \\
& \begin{array}{r}
-7-7 \\
5 h^{2}+2 h-2=0
\end{array} \\
& 5-2=-10 \\
& +1-10- \\
& \begin{array}{rrr}
-1+10 & 9 \\
2-5 & -3
\end{array} \\
& \begin{array}{l}
1-5-3 \\
+2+53 \\
-2+5
\end{array}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 10. } y=\sqrt{4 x^{2}}-\sqrt{49} & a^{2}-b^{2}=(a+b)(a-b) \\
a=2 x & (2 x+7)(2 x-7)=0 \\
b=7 & 2 x+7=0
\end{array} \quad 2 x-7=0
$$

7-5

 Square Root Property

 Square Root Property

 Completing the Square

 Completing the Square}

Objective: I can solve quadratics using square root property

I can put a quadratic into vertex form by completing the square

Square Root Property
$\sqrt{x^{2}}={\sqrt{\#^{2}}}^{2}$
$X= \pm \#$

$$
\begin{array}{rlr|}
\sqrt{x^{2}}=\sqrt{9} & \sqrt{9} & \sqrt{9} \\
x= \pm 3 & \cdots & x \\
3 & 3-3-3 \\
3 & \sqrt[2]{3 \cdot 3} & \sqrt{-3-2} \\
3 & -3
\end{array}
$$

Can you use the square root property?

$$
\begin{aligned}
& x^{2}=5 \\
& x^{2}=5=3 x^{2}=18 \\
& x^{2}-x+1=0 \\
& +x-1
\end{aligned}
$$

Solve using the square root property

$$
\begin{array}{r}
p^{2}-9=0 \\
+9+9 \\
\sqrt{p^{2}}=\sqrt{9} \\
p= \pm 3
\end{array}
$$

$$
x-9=0
$$

$$
+9+9
$$

You Try

$$
\begin{gathered}
\frac{3 b^{2}}{3}=\frac{75}{3} \\
\sqrt{b^{7}}=\sqrt{25} \\
b= \pm 5
\end{gathered}
$$

Solve using the square root property

$$
y^{2}-14=2
$$

$$
\begin{aligned}
& \text { You Try } \\
& \begin{aligned}
& 3 q^{2}-36=0 \\
&+36 \\
&+36 \\
& \hline \frac{3 q^{2}}{}=\frac{36}{3} \\
& 3 q^{2}=\sqrt{12} \\
& 3 \\
& 3 \\
& 2 . \\
& q=\sqrt{32 \cdot 2} \sqrt{3 \cdot-2 \cdot-2} \\
& q= \pm 2 \sqrt{3}
\end{aligned}
\end{aligned}
$$

Solve using the square root property

$$
(x-2)^{2}=25
$$

You Try

$$
(q-5)^{2}-21=4
$$

If we could put a quadratic into that form, that could give us another way to solve!

Perfect Square Binomials
 $\sqrt{x^{2}} \oplus+4 x+\sqrt{4}=(\underline{x} \oplus 2)^{2} \quad x^{2}-4 x+4=(x-2)^{2}$

What does it mean to "complete the square?"

$$
\sqrt{x^{2}} \oplus 6 x+\sqrt{9}=(x+3)^{2}
$$

You try! Complete the square.

manipulative

$$
\begin{array}{ll}
\text { Have you found a pattern? } \\
x^{2}+6 x+\underline{9}\left(\frac{6}{2}\right)^{2} & a x^{2}+b x+c \\
x^{2}+8 x+\underline{16}\left(\frac{8}{2}\right)^{2} & \text { complete the } \square \\
x^{2}+10 x+\underline{25}\left(\frac{10}{2}\right)^{2} & \left(\frac{b}{2}\right)^{2}
\end{array}
$$

Determine the constant that must be added to the expression to make it a perfect square trinomial. Then factor the expression.

$$
p^{2}+14 p+49=(p+7)^{2}
$$

$$
\begin{aligned}
& \text { You Ty } \\
& w^{2}+12 w+36=(w+6)^{2}\left(\frac{b}{2}\right)^{2} \\
& \frac{12}{2}=6^{2} \\
& w^{2}+9 w
\end{aligned}
$$

Solve by completing the square.

$$
f(x)=b^{2}+2 b-8
$$

REMINDER: Graphing Form (Vertex Form)
$\uparrow \frac{\sqrt{f(x)=a(x-h)^{n}+k}}{\substack{\text { Steps } \\ \text { - flip } \\ \text { Kor lie }}}$

$$
\begin{array}{ll}
\text { ex. } & 2(x-1)^{2}+3 \\
& \text { vertex: }(1,3)
\end{array}
$$

axis of symmetry: $X=1 \quad \begin{aligned} & \text { axis of } \\ & \text { symmetry }\end{aligned}$

Find the vertex and graph

$$
f(x)=(x-2)^{2}-1
$$

$g(x)=2(x+4)^{2}-2$

Axis of Symmetry: $\mathrm{x}=+\mathrm{h} \quad f(x)=a(x-h)^{n}+k$

$$
\begin{aligned}
& \text { or } \\
& \mathrm{x}=-\mathrm{b} / 2 \mathrm{a} \quad f(x)=a x^{2}+b x+c
\end{aligned}
$$

Write the quadratic equation in vertex form:
$f(x)=x^{2}+4 x+3 \quad \frac{4}{2}=2^{2}=4 \quad \square$
$f(x)=\left(x^{2}+4 x+4\right)-4+3$
$f(x)=(x+2)^{2}-1 \quad$ vertex:
Vertex:

$$
x=-2
$$

Axis of Symmetry:
Transformations:

Write the quadratic equation in vertex form:
$f(x)=\left(x^{2}-6 x+9\right)-9-2$
$f(x)=(x-3)^{2}-11$ vertex: $(3,-11)$

Vertex:
a of sym:

Axis of Symmetry:
Transformations:

Write the quadratic equation in vertex form:

$$
f(x)=x^{2}+6 x-1
$$

Vertex:
Axis of Symmetry:
Transformations:

Write the quadratic equation in vertex form:

$$
g(x)=x^{2}+5 x+2
$$

Vertex:
Axis of Symmetry:
Transformations:

Write the quadratic equation in vertex form:

$$
\begin{aligned}
& f(x)=2 x^{2}+4 x+6 \\
& f(x)=\left(\frac{2 x^{2}}{2}+\frac{4 x}{2}+\right. \\
& f(x)=2\left(x^{2}+2 x+1\right)-2+6 \\
& f(x)=2(x+1)^{2}+4 \\
& \begin{array}{l}
\text { vertex: }(-1,4) \\
\text { Vertex: } \\
\text { Axis of Symmetry: } \\
\text { Transformations: }
\end{array} \\
& \begin{array}{l}
\text { a gym } \\
x=-1
\end{array}
\end{aligned}
$$

Graph by using transformations. Identify the vertex and axis of symmetry of the parabola. Based on the graph, determine the domain and range of the quadratic function.

$$
f(x)=x^{2}+4 x+3
$$

You Try
Graph by using transformations. Identify the vertex and axis of symmetry of the parabola. Based on the graph, determine the domain and range of the quadratic function.

$$
f(x)=x^{2}+6 x-1
$$

You Try
Graph by using transformations. Identify the vertex and axis of symmetry of the parabola. Based on the graph, determine the domain and range of the quadratic function.

$$
f(x)=2 x^{2}-4 x+2
$$

Give an equation in function form $f(x)=a(x-h)^{2}+k$ of the following graph.

