8.1 Defining and evaluating logarithms inverse exponential

Explain 1 Converting Between Exponential and Logarithmic Forms of Equations

In general, the exponential function $f(x)=b^{x}$, where $b>0$ and $b \neq 1$, has the $\operatorname{logarithmic}$ function $f^{-1}(x)=\log _{b} x$ as its inverse. For instance, if $f(x)=3^{x}$, then $f^{-1}(x)=\log _{3} x$, and if $f(x)=\left(\frac{1}{4}\right)^{x}$, then $f^{-1}(x)=\log _{\frac{1}{4}} x$. The inverse relationship between exponential functions and logarithmic functions also means that you can write any exponential equation as a logarithmic equation and any logarithmic equation as an exponential equation.

$$
\begin{aligned}
& \text { Exponential Equation } \\
& \text { Logarithmic Equation } \\
& \underline{b}^{\otimes}=\underline{a} \\
& \log _{\underline{b}} a=\underline{x} \\
& b>0, b \neq 1
\end{aligned}
$$

Examples
Pg 791

Exponential Equation	Logarithmic Equation
$4^{3}=64$	$\log _{4} 64=3$
$5^{-2}=\frac{1}{25}$	$\log _{5} \frac{1}{25}=-2$
$\left(\frac{2}{3}\right)^{p}=q$	$\log _{\frac{2}{3}} q=p$
$\left(\frac{1}{2}\right)^{n}=m$	$\log _{\frac{1}{2}} m=n$

Switch between Log and exponential forms

The natural logarithm:

$$
y=\ln x \text { is equivalent to } x=e^{y}
$$

The common logarithm:

$$
y=\log _{\log } x \text { is equivalent to } x=10^{y}
$$

(not in the book)

$$
\begin{array}{c|}
\text { Exponential Equation } \\
e^{5} \approx 148.4
\end{array} \ln 148.4=5
$$

$$
\begin{aligned}
& \text { If } f(x)=\log _{10} x \text {, find } f(1000), f(0.01) \text {, and } f(\sqrt{10}) . \\
& f(1000)=x \quad f(0.01)=x \quad \text { P } 795 \quad f(\sqrt{10})=x \\
& \log _{10} 1000=x \\
& 10^{x}=1000 \\
& 10^{x}=10^{3} \\
& x=3 \\
& x=-2 \\
& \text { So, } f(1000)=3 \text {. } \\
& \text { So, } f(0.01)=-2 \text {. } \\
& \log _{10} \sqrt{10}=x \\
& 10^{x}=\sqrt{10} \\
& 10^{x}=10^{\frac{1}{2}} \\
& x=\frac{1}{2} \\
& \text { So, } f(\sqrt{10})=\frac{1}{2} \text {. }
\end{aligned}
$$

If $f(x)=\log _{\frac{1}{2}} x$, find $f(4), f\left(\frac{1}{32}\right)$ and $f(2 \sqrt{2})$.
$f(4)=x$
$f\left(\frac{1}{32}\right)=x$
$f(2 \sqrt{2})=x$
$\log _{\frac{1}{2}} 4=x$
$\log _{\frac{1}{2}} \frac{1}{32}=x$
$\left(\frac{1}{2}\right)^{x}=\frac{1}{32}$
$\left(\frac{1}{2}\right)^{x}=4$
$\left(\frac{1}{2}\right)^{x}=2$
$\left(\frac{1}{2}\right)^{x}=\frac{1}{\square}$
$\left(\frac{1}{2}\right)^{x}=\left(\frac{1}{2}\right)$
$\left(\frac{1}{2}\right)^{x}=\left(\frac{1}{2}\right)$
$x=$

$$
x=\square
$$

$\log _{\frac{1}{2}} 2 \sqrt{2}=x$
$\left(\frac{1}{2}\right)^{x}=2 \sqrt{2}$
$\left(\frac{1}{2}\right)^{x}=\sqrt{2^{2} \cdot 2}$
$\left(\frac{1}{2}\right)^{x}=\sqrt{2}$
$\left(\frac{1}{2}\right)^{x}=2$
So, $f(4)=$
So, $f\left(\frac{1}{32}\right)=\square$.

$$
\begin{aligned}
\left(\frac{1}{2}\right)^{x} & =\left(\frac{1}{2}\right) \\
x & =\square \\
\text { So } f(2 \sqrt{2}) & =\square .
\end{aligned}
$$

9. If $f\left(\mathbb{Q}=\log _{7} x\right.$, find $f(343), f\left(\frac{1}{49}\right)$, and $f(\sqrt{7})$.

$$
\begin{array}{l|ll}
y=\log _{7} 343 \\
7^{y}=343 \\
7^{y}=7^{3} \\
y=3 & y=\log _{7} \frac{1}{49} & y=\log _{7} \sqrt{7} \\
7^{y}=\frac{1}{49} & 7^{y}=\sqrt{7} \\
7^{y}=7^{-2} & 7^{y}=7^{1 / 2} \\
y=-2 & y=1 / 2
\end{array}
$$

Find the exact value without a calculator

$$
\begin{array}{cc}
\log _{2} 32=y & \log _{4} \frac{1}{1}=y \\
2^{y}=32 & 4^{v}=/ 16 \\
y=5 & \frac{y=-2}{} \\
\log 10000000=y & \log _{0} .00001=y \\
10 y=10000000 & 10 y=-.0001 \\
y=7 & y=-5
\end{array}
$$

You try

$$
\begin{array}{ll}
\log _{5} 25=y & \log _{2} \frac{1}{8}=y \\
5^{y}=25 & 2^{y}=1 / 8 y=-3 \\
\frac{y=2}{\log 1000} & \log .001
\end{array}
$$

Use a calculator to

First, find the common logarithm of 0.42 . Round the result to the thousandths place and raise 10 to that number to confirm that the power is close to 0.42 .
$\log 0.42 \approx$

$$
10 \approx 0.42
$$

Next, find the natural logarithm of 0.42 . Round the result to the thousandths place and raise e to that number to confirm that the power is close to 0.42 .
$\begin{aligned} \ln 0.42 & \approx \square \\ e^{\square} & \approx 0.42\end{aligned}$

Use a scientific calculator to find the common logarithm and the natural logarithm of the given number. Verify each result by evaluating the appropriate exponential expression.
11. 0.25

$$
\begin{aligned}
\log \cdot 25 & =-.602 \\
10^{-.602} & =0.25 \\
\ln 0.25 & =-1.386 \\
e^{-1.386} & =0.25
\end{aligned}
$$

12. 4

$$
\begin{aligned}
& \log 4=0.602 \\
& \ln 4=1.386
\end{aligned}
$$

The acidity level, or pH , of a liquid is given by the formula $\mathrm{pH}=\log \frac{1}{\left[\mathrm{H}^{+}\right]}$where $\left[\mathrm{H}^{+}\right]$is the concentration (in moles per liter) of hydrogen ions in the liquid. In a typical chlorinated swimming pool, the concentration of hydrogen ions ranges from $1.58 \times 10^{-8} \mathrm{moles}$ per liter to 6.31×10^{-8} holes per liter. What is the range of the pH for a typical swimming pool?

$$
\begin{aligned}
& \text { PH }=\log \left(\frac{1}{\left(1.58+10^{-9}\right)}\right)=7.8 \\
& p H=\log \left(\frac{1}{\left(6.31 \times 10^{-9}\right.}\right)=7.2
\end{aligned}
$$

The intensity level L (in decibels, dB) of a sound is given by the formula $L=10 \log$, where I is the intensity (in watts per square meter, $\mathrm{W}^{-} / \mathrm{m}^{-}$of the sound and I_{0} is the intensity of the softest audible sound, about $10^{-12} \mathrm{~W} / \mathrm{m}^{2}$. What is the intensity level of a rock concert if the sound has an intensity of $3.2 \mathrm{~W} / \mathrm{m}^{2}$?

$$
L=10 \cdot \log \left(\frac{3.2}{10^{-12}}\right)=125 \cdot 1 \mathrm{~dB}
$$

\square

