### 8.1 Defining and evaluating logarithms

# **Explain 1** Converting Between Exponential and Logarithmic Forms of Equations

In general, the exponential function  $f(x) = b^x$ , where b > 0 and  $b \ne 1$ , has the logarithmic function  $f^{-1}(x) = \log_b x$  as its inverse. For instance, if  $f(x) = 3^x$ , then  $f^{-1}(x) = \log_3 x$ , and if  $f(x) = \left(\frac{1}{4}\right)$ , then  $f^{-1}(x) = \log_{\frac{1}{4}} x$ . The inverse relationship between exponential functions and logarithmic functions also means that you can write any exponential equation as a logarithmic equation and any logarithmic equation as an exponential equation.

**Exponential Equation** 

$$b^{\otimes} = \underline{a} \qquad \log_b \underline{a} = \underline{x}$$
$$b > 0, b \neq 1$$

Module 15 **790** Lesson 1

## Examples

Pg 791

| Exponential Equation             | Logarithmic Equation       |
|----------------------------------|----------------------------|
| <u>4</u> 0= 6 <u>4</u>           | $\log_4 64 = 3$            |
| $5^{-2} = \frac{1}{25}$          | $\log_5 \frac{1}{25} = -2$ |
| $\left(\frac{2}{3}\right)^p = q$ | $\log_{\frac{2}{3}}q = p$  |
| $\left(\frac{1}{2}\right)^n = m$ | $\log_{\frac{1}{2}} m = n$ |

#### P. 297

#### Switch between Log and exponential forms

| Exponential Equation             | Logarithmic Equation       |
|----------------------------------|----------------------------|
| 3 <sup>5</sup> = 243             | log_243=5                  |
| 4-3=64                           | $\log_4 \frac{1}{64} = -3$ |
| $\left(\frac{3}{4}\right)^r = s$ | log_S=1                    |
| 5 w= V                           | $\log_{\frac{1}{5}} v = w$ |
| 32=9                             | log39=2                    |
| 3×=27                            | log <sub>3</sub> 27=X      |

The natural logarithm: 
$$y = \ln x \quad \text{is equivalent to} \quad x = e^y$$

The common logarithm:

$$y = \log x$$
 is equivalent to  $x = 10^y$ 

(not in the book)

| Exponential Equation | Logarithmic Equation |
|----------------------|----------------------|
| $e^5 \approx 148.4$  | ln148.4=5            |
| e1.8 =6              | $\ln 6 \approx 1.8$  |
| $10^5 = 100,000$     | Log 100,000 = 5      |
| 103=1000             | log 1,000 = 3        |

If  $f(x) = \log_{10} x$ , find f(1000), f(0.01), and  $f(\sqrt{10})$ .

P 793

$$f(1000) = x$$

$$f(0.01) = x$$
 P 795

$$f(\sqrt{10}) = x$$

$$\log_{10} 1000 = x$$

$$\log_{10} 0.01 = x$$

$$\log_{10} \sqrt{10} = x$$

$$10^x = 1000$$

$$10^x = 0.01$$

$$10^x = \sqrt{10}$$

$$10^x = 10^3$$

$$10^x = 10^{-2}$$

$$10^x = 10^{\frac{1}{2}}$$

$$x = 3$$

$$x = -2$$

$$x = \frac{1}{2}$$

So, 
$$f(1000) = 3$$
.

So, 
$$f(0.01) = -2$$
.

So, 
$$f(\sqrt{10}) = \frac{1}{2}$$
.

If  $f(x) = \log_{\frac{1}{2}} x$ , find f(4),  $f\left(\frac{1}{32}\right)$  and  $f\left(2\sqrt{2}\right)$ .  $f(4) = x \qquad f\left(\frac{1}{32}\right) = x$   $\log_{\frac{1}{2}} 4 = x \qquad \log_{\frac{1}{2}} \frac{1}{32} = x$   $\left(\frac{1}{2}\right)^x = 4 \qquad \left(\frac{1}{2}\right)^x = \frac{1}{32}$   $\left(\frac{1}{2}\right)^x = \left(\frac{1}{2}\right)^x = \left(\frac{$ 

 $f(2\sqrt{2}) = x$   $\log_{\frac{1}{2}} 2\sqrt{2} = x$   $\left(\frac{1}{2}\right)^{x} = 2\sqrt{2}$   $\left(\frac{1}{2}\right)^{x} = \sqrt{2^{2} \cdot 2}$   $\left(\frac{1}{2}\right)^{x} = \sqrt{2}$   $\left(\frac{1}{2}\right)^{x} = 2$   $\left(\frac{1}{2}\right)^{x} = 2$  x =So  $f(2\sqrt{2}) =$ 

P 793

Your Turn

9. If  $f(0) = \log_7 x$ , find f(343),  $f(\frac{1}{49})$ , and  $f(\sqrt{7})$ .  $y = \log_7 343$   $y = \log_7 \frac{1}{49}$   $y = \log_7 \sqrt{7}$  y = 343  $y = \frac{1}{49}$   $y = \sqrt{7}$   $y = \sqrt{7}$ 

P 795

You try

$$\log_{5} 25 = 9$$
 $6 = 26$ 
 $9 = 26$ 
 $\log 1000$ 

$$\log_2 \frac{1}{8} = 9$$

$$7^9 = \frac{1}{8} \left[ \frac{9}{9} - \frac{3}{8} \right]$$

$$\log_2 001$$

Use a calculator to

First, find the common logarithm of 0.42. Round the result to the thousandths place and raise 10 to that number to confirm that the power is close to 0.42.

$$\log 0.42 \approx \boxed{}$$

Next, find the natural logarithm of 0.42. Round the result to the thousandths place and raise e to that number to confirm that the power is close to 0.42.

| ln 0.42 | ≈         |      |
|---------|-----------|------|
| $e^{-}$ | $\approx$ | 0.42 |

Your Turn

Use a scientific calculator to find the <u>common logarithm</u> and the <u>natural logarithm</u> of the given number. Verify each result by evaluating the appropriate exponential expression.

$$log.25 = -.602$$
 $log.25 = -.602$ 
 $log.25 = -.602$ 
 $log.25 = 0.25$ 
 $log.25 = -1.386$ 
 $log.25 = -1.386$ 
 $log.25 = -1.386$ 
 $log.25 = -1.386$ 
 $log.25 = -1.386$ 

The acidity level, or pH, of a liquid is given by the formula  $pH = log \frac{1}{\lceil H^+ \rceil}$  where  $\left[ H^+ \right]$  is the concentration

(in moles per liter) of hydrogen ions in the liquid. In a typical chlorinated swimming pool, the concentration of hydrogen ions ranges from  $1.58 \times 10^{-8}$  moles per liter to  $6.31 \times 10^{-8}$  noles per liter. What is the range of the pH

for a typical swimming pool?

P 796



P 797

The intensity level L (in decibels, dB) of a sound is given by the formula  $L = 10 \log \frac{1}{I_0}$  where I is the intensity (in watts per square meter,  $W/m^2$ ) of the sound and  $I_0$  is the intensity of the softest audible sound, about  $10^{-12} W/m^2$ . What is the intensity level of a rock concert if the sound has an intensity of  $3.2 W/m^2$ ?

$$L=10.209(\frac{3.2}{10^{-12}})=129.14B$$