$f(x)=\log _{3} x \sqrt{27}$	
$y=\log _{3} \sqrt{27}$	
$3^{y}=\sqrt{27} \rightarrow 3^{y}$	$=27^{\frac{1}{2}}$
3^{y}	$=3^{3} \frac{3}{1} \frac{1}{2}$
3	$=3^{12}$
$y=3 / 2$	

$$
\begin{aligned}
& y=\log _{6} 6^{3} \sqrt{6} \\
& 6^{y}=6 \sqrt[3]{6} \\
& 6^{y}=\sqrt[3]{6^{4}} \\
& 6^{4}=6^{\frac{4}{3}} \quad y=4 / 3
\end{aligned}
$$

25. a. $\ln \underline{e}^{2}=y$

$$
e^{y}=e^{2}
$$

$$
y=2
$$

b.

$$
\begin{gathered}
10^{\log 7}=y \\
\log _{10} y=\log _{10} 7 \\
y=7
\end{gathered}
$$

$$
\text { 16. } \begin{aligned}
19 \quad \log 19 & =1.279 \\
\ln 19 & =2.944
\end{aligned}
$$

36.

$$
10 \cdot \log \left(\frac{1 i^{12-10}}{10^{-12}}\right)=20 d B
$$

Inverse Property of Logarithms If b and M are positive real numbers, with $b \neq 0$, then

$$
\underline{b}_{\underline{\log _{2}} M}^{M}=M
$$

Evaluate

$$
\frac{8^{\log \sqrt{23}}}{\sqrt{23}}
$$

$$
\begin{aligned}
& \text { You Try } \\
& 12^{\log _{12} \sqrt{2}} \\
& 10^{\log 0.2} \\
& \sqrt{2} \\
& 0.2
\end{aligned}
$$

Inverse Property of Logarithms

If b and r are positive real numberspwith $b \neq 0$, then

$$
\log _{\underline{\underline{q}}} \underline{a}=r
$$

Evaluate

You Try

$$
\log _{8} 8^{1.2}
$$

$$
\log 10^{-4}
$$

$$
-4
$$

Product Rule of Logarithms
If M, N and b are positive real numbers, with $b \neq 0$, then
$\log _{b}(M N)=\log _{b} M \oplus \log _{b} N$
Write each of the following logarithms as the sum of logarithms.

$$
\begin{array}{ll}
\log _{2}(5 \cdot 3) & \ln (6 z) \\
\log _{2} 5+\log _{2} 3 & \ln 6+\ln z
\end{array}
$$

You Try

$$
\begin{array}{ll}
\log _{4}(9 \cdot 5) & \log (5 w) \\
\log _{4} 9+\log _{4} 5 & \log _{10} 5+\log _{10} w
\end{array}
$$

Quotient Rule of Logarithms

If M, N and b are positive real numbers, with $b \neq 0$, then

$$
\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N
$$

$\log _{2}\left(\frac{5}{3}\right)$
$\log \left(\frac{y}{5}\right)$
$\log _{2} 5-\log _{2} 3$
$\log 4-\log 9$

You Try

$$
\begin{array}{cc}
\log _{7}\left(\frac{9}{5}\right) & \ln \left(\frac{p}{3}\right) \\
\log _{7} 9-\log _{7} 5 & \ln p-\ln 3
\end{array}
$$

Write the following as the sum or difference of logarithms.

$$
\begin{array}{r}
\log _{3}\left(\frac{4 x}{y}\right) \log _{3} 4 \frac{4 x}{x}-\log _{3} y \\
\left(\log _{3} 4+\log _{3} x\right)-\log _{3} y
\end{array}
$$

$$
\begin{aligned}
& \log _{3}\left(\frac{3 m}{n}\right) \\
& \left.\begin{array}{c}
\log _{3}\left(\frac{q}{3 p}\right) \\
\log _{3} 3 m-\log _{3} n \\
\log _{3} 3+\log _{3} m-\log _{3} n \\
\left(1+\log _{3} m\right)-\log _{3} n \\
\log _{3} q-\left(1+\log _{3} p\right) \\
\log _{3} q-\left(\log _{3} 3 p\right) \\
\log _{3} q-\left(\log _{3} 3\right)+\log _{3} q q
\end{array}\right)
\end{aligned}
$$

Power Rule of Logarithms
If M and b are positive real numbers, with $b \neq 0$, then

$$
\log _{\underline{b}} \underline{M}^{r}=r \log _{b} M
$$

Use the power Rule of Logarithms to express all powers as factors.

$$
\begin{aligned}
& \log _{8} 3^{5} \\
& 5 \log _{8} 3
\end{aligned}
$$

$$
\ln x^{\sqrt{3}}
$$

$$
\sqrt{3} \ln x
$$

$$
\begin{array}{ll}
\text { You Ty } \\
\log _{2} 5^{1.6} & \\
1.6 \log _{2} 5 \quad 5 \log b
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Expand the logaritm. } \\
\log _{2}\left(x^{2} \cdot y^{3}\right)
\end{array} \\
& \begin{array}{l}
\log _{2} x^{2}+\log _{2} y^{3}
\end{array} \log \left(\frac{100 x}{\sqrt{y}}\right) \\
& 2 \log _{2} x+3 \log _{2} y \log 100 x-\log \sqrt{y} \\
& 100 \\
& 10-\left(\begin{array}{lll}
(\log 100+\log x)-\log \sqrt{y} \\
10 & \left.10^{2}+\log x\right)-\log y^{\prime 2} \\
2+\log x^{-}-\frac{1}{2} \log y
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Youtry } \\
& \begin{array}{l}
\log _{4}\left(a^{2} b\right) \log _{4} a^{2}+\log _{4} b \\
2 \log _{4} a+\log _{4} b \\
\log _{3}\left(\frac{9 m^{4}}{\sqrt[3]{n}}\right)=\frac{1}{n 3} \\
\left(\log _{3} 9 m^{4}-\log _{3} \sqrt[3]{n} 9+\log _{3} m^{4}\right)-\log _{3} \sqrt[3]{n} \\
\log _{3} 3^{2}+4 \log _{3} m-\log _{3} n^{1 / 3} \\
2+4 \log _{3} m
\end{array} \\
& \frac{-1}{3} \log _{3} n
\end{aligned}
$$

$$
\begin{aligned}
& \text { Write each of the following as a single logarithm. } \\
& \begin{array}{ll}
\log _{6} 3+\log _{6} 12 \quad \log _{6}(3 \cdot 12) \\
& \log _{6} 36 \\
\log _{6} 60^{2}=2
\end{array} \\
& \begin{array}{l}
\log (x-2)-\log x \\
\log \frac{x-2}{x} \quad \\
\frac{x}{x}-\frac{2}{x} \\
1-\frac{2}{x}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { You try } \\
\log _{8} 4+\log _{8} 16 \\
\log _{8}(4 \cdot 16) \\
\log _{8} \frac{64}{8^{2}} \\
\log _{8} 0^{2}
\end{array} \rightarrow \\
& \log _{3}(x+4)-\log _{3}(x-1) \\
& \log _{3} \frac{x+4}{x-1}
\end{aligned}
$$

$$
\begin{gathered}
2 \log _{2}(x-1)+\frac{1}{2} \log _{2} x \\
\log _{2}(x-1)^{2} \oplus \log _{2} x^{\frac{1}{2}} \rightarrow \sqrt{x} \\
\log _{2}\left[(x-1)^{2} \sqrt{x}\right] \\
\frac{\log (x-1) \oplus \log (x+1)-\sqrt[3]{\log x}}{\log (x-1)(x+1)] \oplus \log x^{3}} \\
\log \frac{(x-1)(x+1)}{x^{3}}
\end{gathered}
$$

You Ty

$$
\log _{5} x-3 \log _{5} 2
$$

$$
\begin{gathered}
\log _{2}(x+1) \oplus \log _{2}(x+2)-2 \xrightarrow[\log _{2} x^{2}]{ } \\
\log _{2}(x+1)(x+2) \oplus \log _{2} x^{2} \\
\log _{2} \frac{(x+1)(x+2)}{x^{2}}
\end{gathered}
$$

Rewrite and express in terms of a and b given that $a=\ln 3$ and $b=\ln 4$

In12
$\ln 16$

Change of Base Formula
If $a \neq 0, b \neq 0$, and M are positive real numbers, then

$$
\log _{a} M=\frac{\log _{b} M}{\log _{b} a}
$$

which means:

$$
\log _{a} M=\frac{\log M}{\log a}=\frac{\ln M}{\ln a}
$$

Use your calculator to approximate the following:

$$
\begin{aligned}
& \log _{4} 45=2.75 \\
& \frac{\log 45}{\log 4}=2.75 \\
& \frac{\ln 45}{\ln 4}=2.75
\end{aligned}
$$

Summary of Properties

$$
\begin{aligned}
& \log _{\underline{g}} \underline{I}^{r}=r \quad \underline{b}^{\log _{b} M}=M \\
& \log _{b}(M \cdot N)=\log _{b} M \oplus \log _{b} N \\
& \log _{b}\left(\frac{M}{N}\right)=\log _{b} M \not \log _{b} N \\
& \log _{b} M^{r}=r \log _{b} M \\
& \log _{a} M=\frac{\log _{b} M}{\log _{b} a}
\end{aligned}
$$

21.

$$
\begin{gathered}
a=\ln 2 \\
\ln 9 \\
\ln (3 \cdot 3)=\ln 3+\ln 3 \\
\frac{b+b}{2 b}
\end{gathered}
$$

23. $\ln 6$

$$
\ln (3 \cdot 2)=\ln 3+\ln 2
$$

$n^{1 / 2}$

$$
\frac{b+a}{a+b}
$$

