$$
\begin{aligned}
& \text { 5. } \begin{aligned}
& 8 m^{2}+4 m-16=-m^{2} \\
&+m^{2} \\
&+m^{2}
\end{aligned} \\
& +m^{2} \\
& 9 m^{2}+4 m-16=0 \\
& a=9 \\
& \begin{array}{l}
a=-4 \\
c=-16
\end{array} \\
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-4 \pm \sqrt{(4)^{2}-4(9) x-(6)}}{2(9)} \\
& x=\frac{-4 \pm \sqrt{16+579}}{18} \\
& \sqrt{592} \\
& \text { (2296 } x=\frac{-4 \pm \sqrt{592}}{18} \\
& x=\frac{-4 \pm 4 \sqrt{37}}{18} \\
& x=-\frac{4}{18} \pm \frac{\sqrt[4]{37}}{18} \\
& x=\frac{-2}{9}=\frac{2 \sqrt{3}}{9} \\
& x=\frac{-2 \pm 2 \sqrt{37}}{9}
\end{aligned}
$$

$$
\text { 7. } \begin{array}{ll}
4 b^{2}+8 b+7=4 & \\
4 b^{2}+8 b+3=0 & a=4 \\
x=\frac{-8 \pm \sqrt{8(-4(4)(3)}}{2(4)} & c=3 \\
x=\frac{-8 \pm \sqrt{64-48}}{8} & =\frac{-48}{16} \\
x=\frac{-8 \pm \sqrt{16}}{8} & =\frac{8+4}{8}=\frac{12}{8}=\frac{3}{2} \\
x=\frac{8 \pm 4}{8}<\frac{8-4}{8}=\frac{4}{8}=\frac{1}{2}
\end{array}
$$

8-2 Complex Operations

Objective: Students will be able to:
Know the parts of a complex number
Know how to add, subtract, and multiply 2 complex numbers
Reduce different powers of i

Definition
Complex numbers are numbers of the form $a+b i$, where a and b are real numbers. The real number a is called the real part and the number b is called the imaginary part.

Complex number
Standard form

Identify the real and imaginary parts of each complex number.
$4+5 i$

Write each of the following as a pure imaginary number.

$$
\begin{aligned}
& \sqrt{-1}=\sqrt{16 \cdot-1}=\sqrt{-3}=\sqrt{3 \cdot-1} \\
& \begin{array}{l}
=\sqrt{6} \cdot \sqrt{-1} \\
=\sqrt{3} \quad=\sqrt{3} \cdot \sqrt{-1}
\end{array} \\
& =\square^{\circ} \\
& \sqrt{-18}=\sqrt{18-1} \\
& \sqrt{18} \cdot \sqrt{-1} \\
& 3 \sqrt{2} i
\end{aligned}
$$

You Try

$\sqrt{-5}$

$$
\begin{aligned}
& \text { You Try }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4-3i) }+(-2+5 i) \\
& 4-3 i-2+5 i \\
& 2+2 i \\
& (4+\sqrt{-25})+(-6-\sqrt{-16}) \\
& (4+5 i) \oplus(-6-4 i) \\
& 4+2 i+5 i \\
& 4+-6+5 i+-4 i \\
& -2+i
\end{aligned}
$$

You Try

$$
\begin{aligned}
& (4-\sqrt{-4})+(-7+\sqrt{-9}) \\
& (4-2 i)-(-2+7 i)
\end{aligned}
$$

Multiply

$$
1^{2}=\sqrt{-1}^{2}
$$

$$
\begin{array}{lr}
4 i(3-6 i) \\
12 i-24 i^{2} \\
12 i-24(-1) \\
12 i+24 & \\
24+12 i & \\
(-2+4 i)(3-i) &
\end{array}
$$

$$
\text { 17. } \begin{aligned}
&(2+i)(4+3 i) \\
& 8+6 i+4 i+3 i^{2} \\
& 8+6 i+4 i+3(-1) \\
& 5+10 i
\end{aligned}
$$

$$
\text { 19. }(3+2 i)^{2}=(3+2 i)(3+2 i)
$$

Remember from before:

$$
\sqrt[n]{a} \sqrt[n]{b}=\sqrt[n]{a b}
$$

only works when $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers

This means that

$$
\sqrt{a} \sqrt{b} \neq \sqrt{a b} \text { if } a<0 \text { or } b<0
$$

Multiply

$$
\sqrt{-25} \sqrt{-4}
$$

$$
(2+\sqrt{-16})(1-\sqrt{-4})
$$

You Try

$$
\sqrt{-9} \sqrt{-36}
$$

$$
(2+\sqrt{-36})(4-\sqrt{-25})
$$

Evaluate

i^{1}	i^{5}
i^{2}	i^{6}
i^{3}	i^{7}
i^{4}	i^{8}

Evaluate:
i^{34}
i^{101}

You Try
i^{43}

The rest is Honors

Multiply (What Happens?)

$$
(4+3 i)(4-3 i)
$$

Complex Conjugate

If $a+b i$ is a complex number, then its conjugate is defined as $a-b i$

Divide:
$\frac{3+4 i}{2 i}$
$-3+i$
$5+3 i$

You Try
$-4+i$ $3 i$

$$
\frac{4+3 i}{1-3 i}
$$

