$$
\begin{aligned}
& \text { 10. } \log \left(\frac{x^{4}}{\sqrt[3]{(x-1)}}\right) \\
& \sqrt{\log x^{4}}-\log \sqrt[3]{x-1} \rightarrow(x-1)^{\frac{1}{3}} \\
& 4 \log x-\frac{1}{3} \log (x-1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 15. } 18 \stackrel{009}{\sqrt{x}}+903 \sqrt{0 \log } \sqrt{x}-10910 \\
& \log \sqrt{x^{18}}+\log \sqrt[3]{x^{9}}-\log 10 \\
& \log x^{2^{2} \cdot 18}+\log x^{\frac{1}{3}} x^{3} \\
& \log x^{9}\left(\log x^{3}-\log 10\right. \\
& \log \left(x^{9} \cdot x^{3}\right) 0 \log 10 \\
& \log \frac{\left(\frac{\left.x^{9} \cdot x^{3}\right)}{10}\right.}{\log \frac{x^{1}}{10}} \quad \text { xssuscxasc:xxx }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 9. } \log _{5}\left(x^{2} \cdot \sqrt{x^{2}+1}\right) \\
& \log _{5} x^{2}+\log _{5} \sqrt{x^{2}+1} \\
& \log _{5} x^{2}+\log _{5}\left(x^{2}+1\right)^{1 / 2} \\
& 2 \log _{5} x+\frac{1}{2} \log _{5}\left(x^{2}+1\right)
\end{aligned}
$$

$$
10^{x}=100 \quad \ln x=5
$$

8-3 Solving Exponential and
Logarithmic equations
Objectives:

- I can solve exponential and logarithmic equations

$$
\begin{array}{ll}
\log _{b} a=x & b^{x}=a \\
b^{x}=a & \log _{b} a=x
\end{array}
$$

Solving Graphically

$$
\begin{aligned}
& \quad \begin{array}{l}
275 e^{0.06 x}=1000 \\
y_{1}= \\
x=275 e^{.00 x} \\
x=21.51
\end{array}, 1000
\end{aligned}
$$

Solve the following equation graphically

$$
\begin{array}{l|c}
10^{201} & =10^{4} \\
\frac{2 x}{2}= & \frac{1}{2} \\
x=2 & 4 e^{0.1 x}=60 \\
& 27.08
\end{array}
$$

Solving Equations Algebraically

- re-write in logarithmic/exponential form - use the property of equality for logarithmic equations

> equations

Solve the following equations buse-exp

$$
\begin{aligned}
& \frac{10}{5}=5 \sqrt{e^{+4 x}} \quad 2 \text { decimals } \\
& \text { [ix }-4=7 \\
& +4+4 \\
& \ln 2=\ln e^{4 x} \\
& \frac{\ln 2}{4}=\frac{4 x}{4} \\
& \frac{\ln 2}{4}=x \\
& x=0.17 \\
& \log _{\underline{s}} 5^{x}=11 \\
& X=\log _{s} 11 \\
& \frac{\log 11}{\log 5} \\
& x=1.49
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solve the following equations } \\
& 2 e^{x-1}+5=80 \\
& \frac{2 e^{x-1}}{-5}=\frac{75}{2} \\
& \log \quad \frac{3 x}{2} \\
& \ln e^{x-1}=\ln \frac{75}{2} \\
& x-1=\ln \frac{75}{2} \\
& +1 \\
& x=\ln \left(\frac{75}{2}\right)+1 \\
& x=1
\end{aligned}
$$

Suppose that $\$ 250$ is deposited into an account that pays 45% compounded quarterly. Solve for t to find how long it will take for
the account to contain at least $\$ 500$. $2=1.01254 t$

$$
\begin{aligned}
& \begin{array}{l}
500=250\left(1+\frac{.045}{4}\right)\left(\log _{1.011252}\right)=\frac{41 \cdot t}{4} \\
500=250(1.01125) 4 \frac{4}{4}
\end{array} \\
& \frac{500}{25 \phi}=\frac{250(1.0112 \mathrm{~s}) 4}{280} \frac{4}{t=15.49}
\end{aligned}
$$

How long will it take to triple a $\$ 250$ initial investment in an account that pays 4.5% compounded quarterly?

Solve the following

$$
\ln (x+12)=3 \ln 2
$$

Solve the following

$$
\frac{4 \ln (x+7)}{4}=\frac{6}{4}
$$

$$
e^{\ln (x+7)}=\frac{3}{2}
$$

$$
\begin{aligned}
& x+7=e^{\frac{3}{2}} \\
& -7
\end{aligned}
$$

$$
\begin{aligned}
& -7 \\
& x^{7}=e^{\frac{3}{2}}-7
\end{aligned} \quad x=-2.52
$$

Solve the following
$3-\log (x+2)=5$
$4^{\log _{4}(1-x)}=1$
$1-x=4^{\prime}$
$1-1-x=4$

$$
\begin{aligned}
& \frac{-x=3}{-1}=3 \\
& x=-3 \\
& x=-3
\end{aligned}
$$

Solve the following
 $$
\log (x-2)+\log (x+7)=3 \log 4
$$

Comparing Earthquake intensities:

On the Richter scale, the magnitude M of an earthquake depends on the amount of energy, E (measured in ergs), released by the earthquake as follows:

$$
M=\frac{2}{3} \log \frac{E}{10^{11.8}}
$$

How many times more severe is a 7.4 quake than a 5.5 quake?

