10.
$$\ln(x-3) \cdot \ln(x+4) = 3 \ln 2 \ln 2$$

 $\ln(x-3) \cdot x+4 = \ln 8$
 $(x-3) \cdot x+4 = 8$
 $(x-3) \cdot x+4 = 8$
 $(x-3) \cdot x+4 = 8$
 $(x-4) \cdot x+5 = 0$
 $(x-4) \cdot (x+5) = 0$
 $(x-4) \cdot (x+5) = 0$

8-4 Graphing Logarithmic Functions Book 15.2

Objectives:

- 1. I can identify the transformations performed on a logarithmic function.
 - 2. I can graph a logarithmic function by hand.
 - 3. I can identify the asymptote of a logarithmic function.

Logarithms & Exponentials

$$f(x) = 2^x$$

$$y = \log_2 x$$

natural log

$$f(x) = \ln x$$

$$f(x) = e^x$$

Complete the table for the function $f(x) = \log x$ Then plot the points on the graph and connect the dots.

Complete the table for the function $f(x) = \ln x$ Then plot the points on the graph and connect the dots.

			X-O	
x	$f(x) = \ln x$	l v	4 7	
$\frac{1}{e} \approx 0.368$	-1	en = >e = ==	2	2
1	0	1 e 9 - 1		X
e ≈ 2.72		e'-c2	0 / 2 4 6	8 10
$e^2 \approx 7.39$	2	P = P 2	-2,	
			-4	
			3	

Analyze the graphs of:

$$f(x) = \log x$$

$$f(x) = \ln x$$

Decreasing:

Intercepts: (\JO)

$$\lim_{x \to \infty} f(x) = -\infty$$

VA/HA: $\sqrt{A} \cdot \chi = 0$ $\sqrt{A} \cdot \chi = 0$ Increasing/ $\sqrt{A} \cdot \chi = 0$ $\sqrt{A} \cdot \chi = 0$

 $(\sigma, 1)$

ref. V.S. Parl Mar D X-axis V.S. X-5/ie Describe the transformations on each graph:

$$f(x) = \log(x+2)$$
left 2
$$f(x) = 3\log(\max) - 4$$
left 2
$$f(x) = -2\ln(2x) + 5$$
ref.
x-axis U.S. up 5
$$f(x) = 3\log_{5}(x-3) + 1$$
left 2
$$f(x) = 3\log_{5}(x-3) + 1$$
left 2
$$f(x) = -2\ln(2x) + 5$$
ref.
x-axis up 1

Graphing Transformed Logarithmic Functions

When graphing a transformed function, it is helpful to consider the following features of the graph: the vertical asymptote, and two reference points (1,0) and (b,1).

Function	$f(x) = \log_b x$	$g(x) = a \log_b (x - h) + k$
Asymptote	x = 0	x = h
Reference point	(1,0)	$(1+h,k)$ $x = h$ $(1+h,k)$ $y \le i $
Reference point	(b, 1)	(b+h,a+k)
b	ase of log	

(B)
$$g(x) = 2 \log (x+2) + 4$$

The transformations of the graph of $f(x) = \log x$ that produce the graph of g(x) are as follows:

- a vertical stretch by a factor of 2
- a translation of 2 units to the left and 4 units up

Note that the translation of 2 units to the left affects only the *x*-coordinates of points on the graph of f(x), while the vertical stretch by a factor of 2 and the translation of 4 units up affect only the y-coordinates.

Your Turn

Identify the transformations of the graph of $f(x) = \log_b x$ that produce the graph of the given function g(x). Then graph g(x) on the same coordinate plane as the graph of f(x) by applying the transformations to the asymptote x=0 and to the reference points (1, 0) and (b, 1). Also state the domain and range of g(x) using set notation.

Graph and analyze the following functions:

$$f(x) \neq 2 \log(x-1)$$

$$\text{pight 1}$$
Domain:

Range:

End

behavior:

VA/HA:

Increasing/

Decreasing:

Intercepts:

Range: (തായ)

lim
$$f(x) = -\infty$$

End kert $x \rightarrow -1^+$

VA/HA: (A : X = -)

Increasing/ inc: (-1109) - to **Decreasing:**

Intercepts: (0/3)

$f(x) = 3 \cdot \ln(x) + 2 e^{-x}$	2.7
------------------------------------	-----

X 9 1 03=0

Domain:

2.7 | 1

1-3-3

Range:

End

behavior:

VA/HA:

Increasing/

Decreasing:

Intercepts:

3. a-f describe transformations domain & range

5-9: graph domain brange