February 04, 2015
\square

$$
\begin{aligned}
& \text { 10. } \ln (x-3) \ln (x+4)=3 \ln 2 \ln 2^{3} \\
& e^{\ln (x-3)(x+4)}=\ln 8 \\
& (x-3)(x+4)=8 \\
& \text { peview: } x^{2}+4 x-3 x-12=8 \\
& a=1 \quad x^{2}-1-20=0=0 \\
& (x-4)(x+5)=0 \\
& x=4
\end{aligned}
$$

$$
\begin{aligned}
& 7 \log 5 \frac{5}{\frac{x}{4}}=30 \\
& 4 \cdot \frac{x}{4}=\log _{3} 30 \cdot 4 \\
& =\left(\frac{\log 30}{\log 5}\right) \cdot 4
\end{aligned}
$$

8-4 Graphing Logarithmic Functions Book 15.2

Objectives:

1. I can identify the transformations performed on a logarithmic function.
2. I can graph a logarithmic function by hand.
3. I can identify the asymptote of a logarithmic function.

Logarithms \& Exponential

$$
\begin{array}{cl}
f(x)=2^{x} & \& f(x)=\log _{2} x \\
y=2^{x} & \text { to find inverse: } \\
x=2^{y} & \text { 1. switch } \mathrm{x} \& \mathrm{y} \\
y=\log _{2} x & \text { 2. solve for } \mathrm{y}
\end{array}
$$

Complete the table for the function $f(x)=\log x$
Then plot the points on the graph and connect the dots.

Complete the table for the function $f(x)=\ln x$
Then plot the points on the graph and connect the dots.

Analyze the graphs of:

$$
f(x)=\log x
$$

Domain: $(0, \infty)$
Range: $(-\infty, \infty)$
End left: $\lim _{x \rightarrow 0^{+}} f(x)=-\infty \lim _{x \rightarrow 0^{+}} f(x)=-\infty$
behavior: right: $\lim f(x)=\infty \lim f(x)=\infty$ $\uparrow \quad x \rightarrow \infty$ $x \rightarrow \infty 0$
VARA: $V A \cdot x=0$
VA:

 inc: $(0,00)$ \& values
Intercepts: $(1,0)$

$$
(1,0)
$$

$$
\begin{aligned}
& \text {-a } \log _{p}(x-h)+k \quad \text { vs are } \\
& \downarrow \\
& \downarrow \\
& \text { wise } \\
& \text { ref. } \\
& \text { taxis } \\
& \text { V.S. PoL } \\
& x=\text { s lie }
\end{aligned}
$$

Describe the transformations on each graph:

$$
\begin{aligned}
& f(x)=\log (x+2) \\
& \text { left } 2 \\
& f(x)=3 \log (\operatorname{man})-4 \\
& \text { VS. } \\
& \downarrow
\end{aligned}
$$

$$
f(x)=-2 \ln (2 x)+5
$$

$$
\text { ref. } \downarrow
$$

x-axis V.S. ups

$$
\begin{gathered}
f(x)=3 \log _{s}(x-3)+1 \\
\text { U.S. right } \begin{array}{c}
\text { v. } \\
3
\end{array} r \text { up } 1
\end{gathered}
$$

Graphing Transformed Logarithmic Functions

When graphing a transformed function, it is helpful to consider the following features of the graph: the vertical asymptote, and two reference points $(1,0)$ and (b,1).

(B) $g(x)=2 \log (x+2)+4$

The transformations of the graph of $f(x)=\log x$ that produce the graph of $g(x)$ are as follows:

- a vertical stretch by a factor of 2
- a translation of 2 units to the left and 4 units up

Note that the translation of 2 units to the left affects only the x-coordinates of points on the graph of $f(x)$, while the vertical stretch by a factor of 2 and the translation of 4 units up affect only the y-coordinates.

Your Turn
Identify the transformations of the graph of $f(x)=\log _{b} x$ that produce the graph of the given function $g(x)$. Then graph $g(x)$ on the same coordinate plane as the graph of $f(x)$ by applying the transformations to the asymptote $x=0$ and to the reference points $(1,0)$ and $(b, 1)$. Also state the domain and range of $g(x)$ using set notation.
2. $g(x)=\frac{1}{2} \log _{2}(x+1)+2$

OP

up 2
left 1
$x=-1$
Graph and analyze the following functions:
$f(x)=-2 \cdot \log (x-1)$ right 1
$x=1$

Domain: right
$x=1$ Range:
End
behavior:

VA/HA:

Increasing/

Decreasing:

Intercepts:

$f(x)=3 \cdot \ln (x)+2 e^{\approx} 2.7$
$\frac{x y}{1} 0_{0.3=0}$
Domain:

Range:

End
behavior:

VA/HA:

Increasing/
Decreasing:

Intercepts:
3.af describe transformations domain range
5-8. graph domain range

