

8.5 Modeling with Logarithms

Objectives:
I can use logarithms to solve real world problems.
I can solve interest equations by hand using logarithms.

c) take the common log of Mercury's distance and pluto's distance and compare the difference.

The common logarithm of a positivequantity is its order of magnitude

Allows us to comparesizes that have a wide range between them:
i.e.: Pluto's distance from the Sun is 2 orders of magnitude greater than Mercury's

A kilometer is 3 orders of magnitude longer than a meter
A dollar is 2 orders of magnitude greater than a penny

Logarithmic Scales are used in many important applications in your (yes, your) life.

Decibel Scale - Sound pH Scale- acifity Richter Scale - earthqualce (Brightness of Stars -

Octave Scale -
F-Scale in Photography

Ban and Deciban -

Palermo Technical Impact Hazard Scale

Decibel Scale

Source	Intensity	Intensity Level	\# of Times Greater Than TOH
Threshold of Hearing (TOH)	$1^{*} 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$	0 dB	10^{0}
Rustling Leaves	$1^{*} 10^{-11} \mathrm{~W} / \mathrm{m}^{2}$	10 dB	10^{1}
Whisper	$1^{*} 10^{-10} \mathrm{~W} / \mathrm{m}^{2}$	20 dB	10^{2}
Normal Conversation	$1^{*} 10^{-6} \mathrm{~W} / \mathrm{m}^{2}$	60 dB	10^{6}
Busy Street Traffic	$1^{*} 10^{-5} \mathrm{~W} / \mathrm{m}^{2}$	70 dB	10^{7}
Vacuum Cleaner	$1^{*} 10^{-4} \mathrm{~W} / \mathrm{m}^{2}$	80 dB	10^{8}
Large Orchestra	$6.3^{*} 10^{-3} \mathrm{~W} / \mathrm{m}^{2}$	98 dB	$10^{9.8}$
Walkman at Maximum Level	$1^{*} 100^{-2} \mathrm{~W} / \mathrm{m}^{2}$	100 dB	10^{10}
Front Rows of Rock Concert	$1^{*} 10^{-1} \mathrm{~W} / \mathrm{m}^{2}$	110 dB	10^{11}
Threshold of Pain	$1^{*} 10^{1} \mathrm{~W} / \mathrm{m}^{2}$	130 dB	10^{13}
Military Jet Takeoff	$1^{*} 10^{2} \mathrm{~W} / \mathrm{m}^{2}$	140 dB	10^{14}
Instant Perforation of Eardrum	$1^{*} 10^{4} \mathrm{~W} / \mathrm{m}^{2}$	160 dB	10^{16}

Richter Scale

Magnitude	Description	Earthquake effects	Frequency of occurrence
Less than 2.0	Micro	Micro earthquakes, not felt. ${ }^{[13]}$	Continual
$2.0-2.9$	Minor	Generally not felt, but recorded.	$1,300,000$ per year (est.)
$3.0-3.9$		130,000 per year (est.)	
$4.0-4.9$	Light	Noticeable shaking of indoor items, rattling noises. Significant damage unlikely.	13,000 per year (est.)
$5.0-5.9$	Moderate	Can cause major damage to poorly constructed buildings over small regions. At most slight damage to well-designed buildings.	1,319 per year
$6.0-6.9$	Strong	Can be destructive in areas up to about 160 kilometres (99 mi) across in populated areas.	134 per year
$7.0-7.9$	Major	Can cause serious damage over larger areas.	15 per year
$8.0-8.9$	Great	Can cause serious damage in areas several hundred kilometres across.	1 per year
$9.0-9.9$	Devastating in areas several thousand kilometres across.	1 per 10 years (est.)	
$10.0+$	Massive	Never recorded, widespread devastation across very large areas; see below for equivalent seismic energy yield.	Extremely rare (Unknown/May not be possible)

Comparing Earthquake intensities:

On the Richter scale, the magnitude M of an earthquake depends on the amount of energy, E (measured in ergs), released by the earthquake as follows:

-. - derived find the magnitude of an earthquake that released 8.9×10^{21} ergs.

$$
M=\frac{2}{3} \log \left(\frac{\left(8.9 \times 10^{21}\right)}{10^{11.8}}\right)=6.77
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { The } 1978 \text { Mexico city earthquake had a magnitude level of } 7.9=M \\
\text { What was the energy level? } \\
\operatorname{ergS}
\end{array} \quad M=\frac{2}{3} \log \frac{E}{10^{11.8}} \text {. } \\
& 10^{11.8} \cdot 10^{11.85}=E \\
& 4.47 \times 10^{23} \\
& \text { ergs }
\end{aligned}
$$

$$
\begin{aligned}
& 10.91756103 \mathrm{E} 19 \\
& 10.92 \times 10^{19}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a^{5}}{a^{3}} \frac{\operatorname{adada\cdot a} a}{a \cdot a \cdot a}=a^{2} \\
& a^{5-3}=a^{2} \quad \frac{x^{7}}{x^{9}}=x^{-2}
\end{aligned}
$$

Carbonated water has a pH o 3.9 and household ammonia has a pH or 11.9
a) what are their hydrogen-ion concentrations
b) how many times greater is the $\mathrm{H}+$ of water than ammonia?

CW. $10^{-3.9}$

$$
A \cdot 10^{-11.9}
$$

Newton's Law of Cooling

This law states that the temperature difference between an object (T) and its surroundings $\left(T_{s}\right)$ decreases exponentially as a functish of time (t). Where T_{0} is the initial temperature of the object, and $-k$ is our constant of yariation representing the constant rate of decrease in the temperature difference.

A cup of cocoa has cooled from 95° to 50° after 13 minutes in a room at 25°. How long will it take for the cup to cool to 30° ?

TIME = MONEY

Compounded annually:

$$
A=P(1+r)^{t}
$$

Ex. 1 Eric invests $\$ 500$ at 7\% interest compounded annually. Find the value of his investment 10 years later.

$$
\begin{aligned}
& A=500(1+.07)^{10} \\
& =\$ 983.57
\end{aligned}
$$

$A=P\left(1+\frac{r}{n}\right)^{n t} \nVdash$ year / compondat
Ex. 3 Roger has $\$ 500$ to invest at 9% annual interest rate compounded
monthly. Ho long will it take for his investment to grow to $\$ 3000$?

$$
\begin{aligned}
& \text { time } \\
& \text { \#ime } 3000=500\left(1+\frac{.09}{12}\right)^{12 t} \\
& \frac{3000}{500}=\frac{500 \cdot(1.0075)^{12 t}}{500} \\
& \log _{10075} 6=\frac{\log _{\tan }}{1.0005^{12 t}} \\
& \frac{\log _{1.075} 6}{12}=\frac{12 t}{12} \\
& \left(\frac{\log 6}{\log 1.0075}\right) \div 12=19.98 \mathrm{yrs}
\end{aligned}
$$

Ex. 6 Mrs. McClelland saving account has a 1% interest rate compounded continuously. If she has $\$ 2000$ in her savings account, how long will it take her to make $\$ 500$ in interest's

$$
2500=2000 e^{.01 t}
$$

