9-1 Angles and Radians Review

Book 18-1

Objectives:

I can find co-terminal and reference angles
I can convert from radians to degrees and vice versa

- If the rotation for an angle θ is less than 1 revolution in a counterclockwise direction, then the measure of θ is between 0° and 360°. An angle of rotation measured clockwise from standard position has a negative angle measure. Coterminal angles are angles that share the same terminal side. For example, the angles with measures of 257° and -103° are coterminal, as shown.

(A) Draw an angle of rotation of 310°. In what quadrant is the terminal side of the angle?

(B) On the same graph from the previous step, draw a positive coterminal angle. What is the angle measure of your angle?

$$
360^{\circ}+310^{\circ}=
$$

On the same graph from the previous two steps, draw a negative coterminal angle. What is
 the angle measure of your angle?

$$
310^{\circ}-360^{\circ}=-50^{\circ}
$$

radians \rightarrow fraction
degrees \rightarrow decimal

$$
\begin{aligned}
& \frac{20^{*}}{1} \cdot \frac{\pi}{180^{x}}=\frac{28 \pi}{180}=\frac{\pi}{9} \\
& \frac{315^{x}}{1} \cdot \frac{\pi}{180^{x}}=\frac{315 \pi}{180}=\frac{7 \pi}{4} \\
& -60^{x} \cdot \frac{\pi}{180^{x}}=\frac{-60 \pi}{180}=\frac{-\pi}{3}
\end{aligned}
$$

Your Turn
8. -495°

$$
\begin{aligned}
& \left(\frac{13 \pi}{12} \cdot \frac{180^{\circ}}{\pi}=\frac{\frac{\mu}{184}-495}{12}=\frac{-49950}{180}=190^{\circ}\right. \\
& =\frac{112}{12}
\end{aligned}
$$

7. The unit circle below shows the measures of angles of rotation that are commonly used in trigonometry, with radian measures outside the circle and degree measures inside the circle. Provide the missing measures.

For each angle, find the nearest tho positive coterminal angles and the nearest negative coterminal angles.

$$
\begin{aligned}
& -\frac{\pi}{2} \frac{-\frac{\pi}{2}+\frac{2 \pi}{1} \cdot 2}{2} \quad \frac{11 \pi}{2}+\frac{4 \pi}{2}=\frac{3 \pi}{2} \\
& \frac{-\frac{\pi}{2}}{2}-\frac{2 \pi}{1 \cdot 2}=\frac{-\pi}{2}-\frac{4 \pi}{2}=\frac{-5 \pi}{2}
\end{aligned}
$$

You Try:
$\frac{2 \pi}{3}$ pos: $\frac{2 \pi}{3}+\frac{2 \pi \cdot 3}{1} \cdot 3-\frac{\pi}{4}$
3

$$
\text { neg: } \frac{2 \pi}{3}-\frac{6 \pi}{3}=\frac{4 \pi}{3}
$$

Reference Angles: The acute angle formed by the terminal side and the x-axis.

You try! Given the angle, find the reference angle:

Reminder:
Angular velocity $=\frac{\boldsymbol{\theta}}{\boldsymbol{t}}$

Arclength:
given in degree: $s=\frac{\theta}{360} \cdot 2 \pi r$
given in radians: $s=r \boldsymbol{\theta}$
11. Astronomy A neutron star (an incredibly dense collapsed star) in the Sagittarius Galaxy has a radius of 10 miles and completes a full revolution every 0.0014 seconds. Find the angular velocity of the star in radians per second, then use this velocity to determine how far a point on the equator of the star travels each second. How does this compare to the speed of light (about $186,000 \mathrm{mi} / \mathrm{sec}$)?

$$
\begin{aligned}
& A V=\frac{\theta}{t}=\frac{2 \pi}{0.0014}=4488 \mathrm{rad} / \mathrm{sec} \\
& \begin{aligned}
C & =2 \pi r \\
& =2 \pi 10 \quad \frac{20 \pi}{.0014}=44880 \mathrm{mi} / \mathrm{sec} \\
& =20 \pi
\end{aligned} \\
& \begin{array}{l}
\frac{44880}{186000}=.24=24 \div
\end{array}
\end{aligned}
$$

12. Geography The northeastern corner of Maine is due north of the southern tip of South America in Chile. The difference in latitude between the locations is 103°. Using both degree measure and radian meas
a north-south circumference of Earth $\operatorname{pf} 2486$ miles, find the distance between the two locations.

$$
\begin{aligned}
& \frac{103^{\circ}}{360^{\circ}}=\frac{x}{24860} \\
& \text { earth } \\
& x=7113 \mathrm{mi}
\end{aligned}
$$

