9-2

Solving a system of linear and quadratic equations graphically

Objective: I can solve a system of linear and/or quadratic equations graphically

Graphing Quadratics:

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& \text { Vertex form } \\
& (h, k) \\
& a=\text { stretch }
\end{aligned}
$$

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& \text { Standard form } \\
& \text { (1) complete the } \square \\
& \text { (2) } x \text {-cord: } x=\frac{-b}{2 a}
\end{aligned}
$$

$$
y \text {-coord: plug in } x
$$

$$
a=s+r e t c h
$$

Graph the system:

$$
\left\{\begin{array}{l}
y=-\frac{3 x}{1}+4 \\
-y=\frac{3 x}{1} x-2
\end{array}\right.
$$

When solving a system of linear equations graphically, what did the SOLUTION look like?
where the 2 lines
 intersect

inf many

When solving a system of linear AND quadratic equations, what might the possible solutions \uparrow look like?

Find the real solutions of the given system by graphing:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{y=x^{2} \quad a=1\right. \\
-y=2 x+0 \\
V:(0,0)
\end{array}\right. \\
& \begin{array}{l}
(x-0)^{2}+0 \\
\frac{-0}{2(1)}=(0,0)
\end{array}
\end{aligned}
$$

Find the real solutions of the given system by graphing:

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=x^{2}+4 x+7 \text { a }=1 \\
y=\frac{2 x+1}{1} \\
V:(-2,3) \\
x=\frac{-b}{2 a}=\frac{-4}{2(1)}=-2 \\
y \rightarrow(-2)^{2}+4(-2)+7 \\
\\
4-8+7=3
\end{array}\right.
\end{aligned}
$$

Find the real solutions of the given system by graphing:

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=(x+2)^{2}+3 \\
a y=3
\end{array}\right. \\
& V:(-2,3)
\end{aligned}
$$

When solving a system of 2 quadratic equations, what might the possible solutions look like?

no sole

$$
2 \text { sols }
$$

Find the real solutions of the given system by graphing:

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=x^{2}+2 \quad a=1 \\
a y=-x^{2}+2 x+2 \quad a=-1
\end{array}\right. \\
& \begin{array}{l}
x=(0,2) \\
x=\frac{-0}{2(1)}=0 \\
y \rightarrow 0^{2}+2=2 \\
x=\frac{-2}{2(-1)}=1 \\
-(1,3)
\end{array} \\
& (1,3)
\end{aligned}
$$

Find the real solutions of the given system by graphing:

$$
\left\{\begin{array}{l}
y=(x-3)^{2}+4 \quad a=1 \\
y=-2(x-3)^{2}+4 a=.2 \\
V:(3,4) \\
V:(3,4)
\end{array}\right.
$$

