Secondary Math	11
occondary Matri	11
Unit 12 review	

Name:	$\times M$		
		Period:	_

Write the standard form of the equation of each circle whose information is given

1. Center: (1, -3) Radius: 4

	_				1 1 4			7.4		
	ı	(X-	.2		/		12		11	2 2
		14-	Ν.	- 1	41	17	d .		116	1
1		(A :	1	1	V	7 /	1		14	
1					`J.			1.1 S		

2. C

lenter: ((3, 0))	١	-
Radius:				

$$(x-3)^2+y^2=3$$

3. How many distinct committees of 7 people can be formed if the people are drawn from a pool of 18

4. Your teacher is going to assign all 28 students in your class to a seating chart. In how many ways can your teacher arrange 7 students in the front row.

5. Factor the following expression: $2x^2 + 4x$

- 6. Find the radius...
- a. of a circle with the diameter of 12

c. of a circle with an area of 25π

$$\frac{1}{4} = \frac{25}{4}$$

$$V^2 = 25$$

$$V = 5$$
units

a. 45°

d.

b. of a circle with the circumference of 8π

d. 420°

31.6 m

$$\frac{420 \pi}{180} = \boxed{\frac{17}{3}}$$

a.
$$\frac{9\pi}{4} = \frac{9 \cdot 180^{\circ}}{4}$$

b.
$$\frac{4\pi}{4} = \frac{1180^{\circ}}{4} = \boxed{180^{\circ}} \text{ c. } \frac{\pi}{12} = \boxed{15^{\circ}}$$

TT= 180°

9. Find the area of the shaded region

$$a. \theta = 40^{\circ}, r = 12 in.$$

b.
$$\theta = \frac{\pi}{3}$$
, r = 7 m.

c.
$$\theta = \frac{\pi}{6}$$
, r = 24 in.

11. Find the volume of each figure.

12. Graph each given the standard form of the equation.

a.
$$(x-3)^2 + (y+2)^2 = 25$$

13. Given that Q is the center of the circle, find the measure of AB.

15. Simplify: $\frac{6a^{-5}b^3}{2a^1b^2}$

16. Find the exact trig value

$$\frac{Vz}{z}$$
 \in honors

- 14. Use the diagram below to answer the following.
- A. Find the area of the shaded region.
- B. Find the length of AB

$$\frac{a}{h} \cdot \frac{1}{b} \cdot \frac{\pi}{3} = \cos \left(\frac{\pi}{3} \right)$$

Match the notation with the term that best describes it.

A. Center

B. Chord

C. Diameter

D. Radius

E. Point of tangency

$$C$$
 22. \overline{AD}

F. Common external tangent

G. Common internal tangent

H. Secant

HONORS ONLY

25. Complete the square to find the standard form of each equation. Label the center and radius.

$$x^2 + y^2 - 10x + 6y + 9 = 0$$

b.
$$x^2 + y^2 + 18x + 4y + 4 = 0$$

 $(x+9)^2+(y+2)^2=81$

$$(x-5)^2 + (y+3)^2 = 25$$

Center: $(5,-3)$

center: (-9,-2)

radius : 5

radius: 9