Secondary Math II
Unit 7 Review
Solution Guide

$$
\begin{array}{lc}
\begin{array}{lc}
\text { Expand thedlowing } & (3 x+4)^{2} \\
\text { 1. } 2 x-7)(3 x+9) & \text { 2. }(3 x+4) \\
6 x^{2}+18 x-21 x-63 & (3 x+4)(3 x+4) \\
6 x^{2}-3 x-63 & \text { OR } \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& =9 x^{2}+24 x+16
\end{array}
\end{array}
$$

Expand the following

$$
\begin{array}{ll}
\text { 3. } \begin{array}{ll}
(x-11)^{2} & 4(5 x-b)(5 x+6) \\
(a-b)^{2}=a^{2}-2 a b+b^{2} & (a+b)(a-b)=a^{2}-b^{2} \\
x^{2}-22 x+12 & 25 x^{2}-36
\end{array}
\end{array}
$$

Factor the following

$$
\begin{aligned}
& \text { Factor the following } \\
& \text { 5. } \frac{3 m^{5} n^{2}-\frac{2 m^{3} n}{3 m^{3} n} \frac{3 m^{3} n}{}}{} \begin{array}{l}
6 x(x-2)+5(x-2) \\
3 m^{3} n\left(m^{2} n-4\right) \\
(x-2)(6 x+5)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Factor the following } \\
& \text { 7. } x^{2}+\left(a x+8 \quad 1 \cdot 8=8 \quad 8 \quad a^{a^{2}-b^{2}=(a+b)(a-b)}\right. \\
& x^{2}+2 x+4 x+8 \\
& x(x+2)+4(x+2) \\
& (x+2)(x+4) \\
& \begin{array}{l}
=6 \quad x^{4}-16 \\
\left(x^{2}+4\right)\left(x^{2}-4\right) \\
\left(x^{2}+4\right)(x+2)(x-2)
\end{array}
\end{aligned}
$$

Solve for x . Give EXACT answers.
11. $\frac{3 x^{2}}{3}=\frac{75}{3}$
12.

$$
\begin{aligned}
& x^{2}-16=4 \\
& \\
& +16+16
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{x^{2}}=\sqrt{25} \\
& x= \pm 5
\end{aligned}
$$

Solve for x. Give EXACT answers.
13.

$$
\begin{array}{rrr|}
\text { 13. } x^{2}+6 x=-9 & 14.2 x^{2}+23 x=-11 \\
+9+9 & +11+11 & 2 \cdot 11=22 \\
x^{2}+6 x+9=0 & 2 x^{2}+23 x+11=0 & 23\left(\frac{122}{211}\right.
\end{array}
$$

special factoring $2 x^{2}+x_{i}+22 x+11=0$

$$
\begin{array}{cc}
(x+3)^{2}=0 & x(2 x+1)^{\prime}+11(2 x+1)=0 \\
2 a b=2 \cdot x \cdot 3=6 x & (2 x+1)(x+11)=0 \\
(x+3)(x+3)=0 & 2 x+1=0 \\
x+3=0 & x+3=0
\end{array}
$$

Find the zeros of each functions by factoring:

$$
\begin{array}{lll}
y=3 x^{2}+17 x+22 & 3 \cdot 22=66 & 16 . f(x)=x^{2}-10 x-11 \\
0=3 x^{2}+17 x+22 & 611) & 0=x^{2}-10 x-11 \\
0=3 x^{2}+6 x+11 x+22 & 0=x^{2}-11 x+x-11 \\
0=3 x(x+2)+11(x+2) & 0=x(x-7)+1(x-11) \\
0=(x+2)(3 x+11) & 0=(x-11)(x+1) \\
x+2=0 & 3 x+11=0 & x-11=0 \\
-2-1 & x+1=0 \\
x=-2 & -111 & -11 \\
& \frac{3 x=-11}{3} & x=11 \\
x=-11 / 3 & x=-1
\end{array}
$$

What constant must be added to the polynomial to make it a perfect square?
17. $x^{2}+12 x+36$

$$
\frac{12}{2}=6^{2}=36
$$

$$
\begin{aligned}
& \text { 18. } x^{2}+7 x+\frac{49}{4} \\
& \left(\frac{7}{2}\right)^{2}=\frac{2^{2}}{2^{2}} \cdot \frac{49}{4}
\end{aligned}
$$

Write the following in vertex form by completing the square.

$$
\begin{aligned}
& \text { 19. } f(x)=x^{2}-8 x-8 \\
& f(x)=\left(x^{2}-8 x+16\right)-16-8 \\
& \frac{-8}{2}=-(-4)^{2}+16 \\
& f(x)=(x-4)^{2}-24
\end{aligned}
$$

Write the following in vertex form by completing the square.

$$
\text { 20. } \begin{array}{rl}
y & =x^{2}+6 x-1 \\
\frac{6}{2}=3^{2} & y=\left(x^{2}+6 x+9\right)-9-1 \\
y & =(x+3)^{2}-10
\end{array}
$$

Write the following in vertex form by completing the square.
21.

$$
\begin{aligned}
& \text { 21. } f(x)=2 x^{2}+12 x+16 \\
& f(x)=\left(2 x^{2}+12 x+1\right)-+16 \\
& \frac{6}{2}=3^{2}, f(x)=2\left(x^{2}+6 x+9\right)-18+16 \\
& f(x)=2(x+3)^{2}-2
\end{aligned}
$$

22. Write a quadratic function given the zeros of -11 and 3

$$
\begin{gathered}
x=-11 \quad x=3 \\
11+11 \\
(x+11)=0 \quad(x-3)=0 \\
(x+11)(x-3)=0 \\
x^{2}-3 x+11 x-33 \\
f(x)=x^{2}+8 x-33
\end{gathered}
$$

23. Write a quadratic function given the zeros of -4 and -7

$$
\begin{array}{rr}
x=-4 & x=-7 \\
+4+4 & +7 \\
(x+4)=0 & (x+7)=0 \\
(x+4)(x+7)=0 \\
x^{2}+7 x+4 x+28 \\
f(x)=x^{2}+11 x+28
\end{array}
$$

24. Given $f(x)=2(x-3)^{2}-5$
a. Write the vertex

$$
(3,-5)
$$

b. Write the equation for the axis of symmetry

$$
x=3
$$

c. Describe any transformations

- Vertical stretch by 2
- Shift right 3 - Shift downs
d. Graph $f(x)$ on the right

25. The length of a rectangular plot of land is 6 miles less than its width. If the area of the rectangle is 135 square miles, what are the dimensions of the land?

$$
\begin{aligned}
& w \begin{aligned}
w(w-6) & =135 \\
w-6 & m^{2} \\
w & w^{2}-6 w
\end{aligned}=1350135-135 \\
& \begin{array}{l}
1-13 S=-13 S \\
l=15-6=+9-15 \\
w^{2}-6 w-135=0 \\
w^{2}+9 w-15 w-13 S=0
\end{array} \\
& W=15 \mathrm{mi} \\
& \ell=9 \mathrm{mi} \quad(w+9)(w-1 s)=0 \\
& \begin{array}{cc}
w+9=0 & w-15=0 \\
-9-9 & +15+15 \\
w-9 & w=15
\end{array}
\end{aligned}
$$

mull.
Subtr.
26. The product of numbers who have a difference of five is 84. Write an equation and use factoring to find the two numbers.

$$
\begin{array}{r}
x(x-5)=84 \\
x^{2}-5 x=84 \\
-84-84 \\
1-84=-84 \quad x^{2}-5 x-84=0 \\
184 \\
242 \\
421 \\
4+7)(x-12)=0 \\
+x+7=0 \quad x-12=0 \\
-7-7 \\
x=-7 \quad x=12 \\
x+12
\end{array}
$$

$$
\begin{gathered}
\sin \theta=\frac{6}{10}=\frac{0}{n} \\
a^{2}+b^{2}=c^{2} \\
a^{2}+6^{2}=10^{2} \\
a^{2}+36=100 \\
-36-36 \\
\sqrt{a^{2}}=\sqrt{64} \\
a=8
\end{gathered}
$$

29. simplify

$$
\begin{aligned}
& 3 x^{-2} y \\
& 6 x^{3} y^{-1}
\end{aligned}=\frac{1 y^{2}}{2 x^{5}}=\left(\frac{x^{-2}}{x^{3}}=\frac{1}{x^{2} x^{3}}=\frac{1}{x^{5}}+\frac{y}{y^{-1}}=\frac{y-y=\frac{y^{2}}{1}}{}\right.
$$

30. Simplify $64^{2 / 3}$

